Robot for Navigation in Maize Crops for the Field Robot Event 2023
Povzetek
Operacije, kot je avtonomna navigacija robotov med vrstami rastlin na koruznem polju, so ključne za razvoj robotov v kmetijstvu. Takšne operacije so lahko del številnih nalog, kot so škropljenje, spremljanje rasti in zdravja rastlin ter
odkrivanje plevela in škodljivcev. Na dogodku »Field Robot Event 2023« (FRE) so univerze in raziskovalne skupine izzvane k razvoju naprednih algoritmov za kmetijske robote. Universidad Autónoma Chapingo razvija robota za
različna kmetijska opravila, s ciljem zagotoviti cenovno dostopno rešitev za mehiške kmete v prihodnosti. Za dogodek FRE so ustvarili navigacijski algoritem, ki uporablja podatke iz odometrije, inercialne merilne enote (IMU), RPLIDAR
(nizkocenovno LiDARsko tipalo) in kamer, kar omogoča avtonomno odločanje. Algoritem je bil razvit v Robotskem Operacijskem Sistemu (ROS Melodic) in je nalogo razdelil na več korakov, ki so bili preizkušeni za določitev dejanskih
premikov robota. Navigacijski sistem upošteva interesna področja (ROI) in masno središče robota, kar omogoča krmiljenje robota med vrstami koruze. Za premikanje med vrstami uporablja meritve RPLIDAR, medtem ko za zavoje
uporablja orientacijo robota prek IMU. Za zaznavanje rastlin za škropljenje so na vsaki strani vozila nameščeni laserski merilniki. Zaznavanje ovir temelji na algoritmu YOLOv5 (You Only Look Once) in laserju, medtem ko za vzvratno
navigacijo robot uporablja zadnjo kamero. Med tekmovanjem se je robot soočal z izzivi, kot so ravnanje s travo, majhne rastline in potrebe po drugačnih energetskih virih, kar je vplivalo na njegovo delovanje.
Prenosi
Literatura
Bai, Y., Zhang, B., Xu, N., Zhou, J., Shi, J., & Diao, Z. (2023). Vision-based navigation and guidance for agricultural autonomous vehicles and robots: A review. Computers and Electronics in Agriculture , 205 , 107584.
Calicioglu, O., Flammini, A., Bracco, S., Bellù, L., & Sims, R. (2019). The future challenges of food and agriculture: An Integrated analysis of trends and solutions. Sustainability, 11 (1), 222. Retrieved from: https://doi.org/10.3390/su11010222
Cizmic, D., Hoelbling, D., Baranyi, R., Breiteneder, R., & Grechenig, T. (2023). Smart boxing glove "RD a": IMU combined with force sensor for highly accurate technique and target recognition using machine learning. Applied Sciences , 13 (16), 1-16. Retrieved from: https://doi.org/10.3390/app13169073
Food and Agriculture Organization (FAO). (2009). How to feed the world in 2050. Retrieved from: https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/Issues_papers_SP/La_agricultura_mundial.pdf
Feng, X., Liang, W. J., Chen, H. Z., Liu, X. Y., & Yan, F. (2023). Autonomous localization and navigation for agricultural robots in greenhouse. Wireless Personal Communications , 131 , 2039-2053. Retrieved from: https://doi.org/10.1007/s11277-023-10531-z
Fujita, S., Emaru, T., Ravankar, A. A., & Kobayashi, Y. (2020). Development of robust ridge detection method and control system for autonomous navigation of mobile robot in agricultural farm. In Symposium on Robot Design, Dynamics and Control (pp. 16-23). Cham: Springer International Publishing.
Jiang, G., Wang, Z., & Liu, H. (2015). Automatic detection of crop rows based on multi-ROIs. Expert Systems with Applications , 42 (5), 2429-2441. Retrieved from: https://doi.org/10.1016/j.eswa.2014.10.033
Khadatkar, A., Mathur, S. M., Dubey, K., & BhusanaBabu, V. (2021). Development of embedded automatic transplanting system in seedling transplanters for precision agriculture. Artificial Intelligence in Agriculture , 5 , 175-184. Retrieved from: https://doi.org/10.1016/j.aiia.2021.08.001
Kannan, M., Ismail, I., & Bunawan, H. (2018). Maize dwarf mosaic virus: From genome to disease management. Viruses , 10 (9), 492. Retrieved from: https://doi.org/10.3390/v10090492
Kurniawan, A. (2021). IMU sensor: Accelerometer and gyroscope. In: Beginning Arduino Nano 33 IoT. Apress, Berkeley, CA. Retrieved from: https://doi.org/10.1007/978-1-4842-6446-1_3
Makesense (2023). Makesense for Labeling [Software platform]. Retrieved from: https://www.makesense.ai/
Mao, S., Li, Y., Ma, Y., Zhang, B., Zhou, J., & Wang, K. (2020). Automatic cucumber recognition algorithm for harvesting robots in the natural environment using deep learning and multi-feature fusion. Computers and Electronics in Agriculture , 170 , 105254. Retrieved from: https://doi.org/10.1016/j.compag.2020.105254
Monteiro, N., Alencar, E., Souza, N., & Leao, T. (2021). Ozonized water in the preconditioning of corn seeds: physiological quality and field performance. Ozone Science and Engineering , 43 (5), 436-450. Retrieved from: https://doi.org/10.1080/01919512.2020.1836472
Nehme, H., Aubry, C., Solatges, T., Savatier, X., Rossi, R., & Boutteau, R. (2021). Lidar-based structure tracking for agricultural robots: Application to autonomous navigation in vineyards. Journal of Intelligent & Robotic Systems , 103, 1-16. Retrieved from: https://doi.org/10.1007/s10846-021-01519-7
Orum, J., Wubale, T., Marcus, S., Harold, A., Veldhuisen, B., & Hildrands, H. (2023). Optimal use of agricultural robot in arable crop rotation: A case study from the Netherlands. Smart Agricultural Technology, 5, 1-8. Retrieved from: https://doi.org/10.1016/j.atech.2023.100261
Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, faster, stronger. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Retrieved from: https://arxiv.org/abs/1612.08242
Reyes-Amador, A., & Velázquez-López, N. (2019). Modelo industrial de carrocería para vehículo de cuatro ruedas (No. de solicitud MX/f/2018/003352). IMPI. Retrieved from: https://siga.impi.gob.mx/
Reyes-Amador, A., & Velázquez-López, N. (2020). Sistema de suspensión para vehículos terrestres autónomos o no autónomos (Patente No. MX 4369 B). IMPI. Retrieved from: https://siga.impi.gob.mx/
Saavedra Sueldo, C., Perez Colo, I., De Paula, M., Villar, S. A., & Acosta, G. G. (2023). ROS-based architecture for fast digital twin development of smart manufacturing robotized systems. Annals of Operations Research, 322 (1), 75-99. Retrieved from: https://doi.org/10.1007/s10479-022-04759-4 Solawetz, J. (2020). What is YOLOv5? A Guide for Beginners.
Roboflow. Retrieved from:https://blog.roboflow.com/yolov5-improvements-and-evaluation/
Subeesh, A., & Mehta, C. R. (2021). Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture , 5 , 278-291. Retrieved from: https://doi.org/10.1016/j.aiia.2021.11.004
Xie, D., Chen, L., Liu, L., Chen, L., & Wang, H. (2022). Actuators and sensors for application in agricultural robots: A review. Machines , 10 (10), 913. Retrieved from: https://doi.org/10.3390/machines10100913
Copyright (c) 2024 David Iván Sánchez-Chávez, Noé Velázquez-López, Guillermo García-Sánchez, Alan Hernández-Mercado, Omar Alexis Avendaño-Lopez, Mónica Elizabeth Berrocal-Aguilar
To delo je licencirano pod Creative Commons Priznanje avtorstva-Nekomercialno-Brez predelav 4.0 mednarodno licenco.