Napredne navigacijske tehnike in postopki umetne inteligence: Ključne strategije ekipe Carbonite na tekmovanju Field Robot Event 2023

Avtorji

  • Samuel Mannchen Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen https://orcid.org/0009-0008-9041-662X
  • Jonas Mayer Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen
  • Janis Lion Schőnegg Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen
  • Klara Fauser Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen

DOI:

https://doi.org/10.18690/agricsci.22.1-2.2

Ključne besede:

kmetijska robotika, precizno kmetijstvo, trajnost, umetna inteligenca

Povzetek

Eden od pristopov za reševanje trenutnih izzivov v kmetijstvu, ki jih povzročajo podnebne spremembe, naraščajoče svetovno prebivalstvo in izguba biotske raznovrstnosti, je precizno kmetijstvo, pri katerem igrajo robotski sistemi ključno vlogo. Tekmovanje poljskih robotov Field Robot Event (FRE) 2023 je zato izzvalo študentske ekipe, da razvijejo in izboljšajo avtonomne kmetijske robote. V tem prispevku predstavljamo izboljšave našega poljskega robota »Carbonite«, ki ga razvijamo na Schülerforschungszentrum (SFZ) Südwürttemberg. Naša lahka in kompaktna zasnova robota, podprta z naprednim in učinkovitim navigacijskim algoritmom, je omogočila hitro premikanje robota po polju. Poleg tega pa smo uvedli novo razvit sistem za ciljno in natančno uporabo vode, gnojil in herbicidov, ki temelji na naprednem algoritmu za zaznavanje prisotnosti rastlin, kar preprečuje nepotrebno porabo virov. Prav tako smo pripravili postopke umetne inteligence za prepoznavanje objektov, ki temeljijo na modelih You Only Look Once (YOLO), kar robotu omogoča ustrezno odzivanje glede na vrsto ovire. Carbonite je tako osvojil prvo mesto tako v nalogi navigacije kot tudi v nalogi obdelave rastlin, k čemur je prispevala lahka zasnova in posledično visoka hitrost premikanja robota, vse to pa je pripomoglo k skupni zmagi skupine na FRE 2023.

Prenosi

Podatki o prenosih še niso na voljo.

Biografije avtorja

  • Samuel Mannchen, Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen

    Obertorstraße 16, 88662 Überlingen, Germany

  • Jonas Mayer, Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen

    Obertorstraße 16, 88662 Überlingen, Germany

  • Janis Lion Schőnegg, Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen

    Obertorstraße 16, 88662 Überlingen, Germany

  • Klara Fauser, Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen

    Obertorstraße 16, 88662 Überlingen, Germany

Literatura

1. ASUSTeK Computer Inc. (n.d.). EA-AC87—Support. Retrieved March 29, 2025, from https://www.asus.com/supportonly/eaac87/helpdesk_knowledge/

2. Benenson, R., Popov, S., & Ferrari, V. (2019). Large-scale interactive object segmentation with human annotators. arXiv:1903.10830. https://doi.org/10.48550/arXiv.1903.10830

3. Bjelonic, M. (2016). Leggedrobotics/darknet_ros [C++]. Robotic Systems Lab - Legged Robotics at ETH Zürich. https://github.com/leggedrobotics/darknet_ros

4. Bochkovskiy, A. (2013). AlexeyAB/darknet [C]. https://github.com/AlexeyAB/darknet

5. Bosch Sensortec GmbH. (n.d.). Smart Sensor BNO055. Bosch Sensortec. Retrieved from https://www.bosch-sensortec.com/products/smart-sensor-systems/bno055/

6. Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59–67. https://doi.org/10.1038/nature11148

7. Field Robot Event. (2022, October 21). Field Robot Event 2023 in Slovenia! – Field Robot Event. https://fieldrobot.nl/event/index.php/2022/10/21/field-robot-event-goes-to-slovenia/

8. Field Robot Event. (2023a). FRE2023-RESULTS_FINAL.pdf. Field Contest 13.06.2023 – 15.06.2023 FRE 2023 Results. Retrieved from: https://fieldrobot.nl/event/wp-content/uploads/2023/06/FRE2023-RESULTS_FINAL.pdf

9. Field Robot Event. (2023b). Task 1 Navigation – Field Robot Event. Retrieved from: https://fieldrobot.nl/event/index.php/contest-hybrid/tasks-h/

10. Field Robot Event. (2023c). Task 2 treating (spraying) the plants – Field Robot Event. Retrieved from: https://fieldrobot.nl/event/index.php/contest-hybrid/task-h1/

11. Field Robot Event. (2023d). Task 3 sensing and recognizing possible obstacles – Field Robot Event. Retrieved from: https://fieldrobot.nl/event/index.php/contest-hybrid/task-h2/

12. Field Robot Event (2023e). Task 4 Static and dynamic obstacles – Field Robot Event. https://fieldrobot.nl/event/index.php/contest-hybrid/task-h3/

13. Field Robot Event (2023f). Task 5 Freestyle – Field Robot Event. Retrieved from: https://fieldrobot.nl/event/index.php/task-5-freestyle/

14. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. https://doi.org/10.1038/nature10452

15. Gil, G., Casagrande, D. E., Cortés, L. P., & Verschae, R. (2023). Why the low adoption of robotics in the farms? Challenges for the establishment of commercial agricultural robots. Smart Agricultural Technology, 3, 100069. https://doi.org/10.1016/j.atech.2022.100069

16. Intel Corporation. (n.d.). Introducing the Intel® RealSenseTM Depth Camera D455. Intel® RealSenseTM Depth and Tracking Cameras. Retrieved from: https://www.intelrealsense.com/depth-camera-d455/

17. Keenso. (n.d.). Mini-Wasserpumpe, 12 V DC, 6 W, Tauchpumpe, ohne Bürste, energiesparend, für Aquarium, Brunnen, kleine Fischteiche, Solarsystem: Amazon.de: Haustier. Retrieved from: https://www.amazon.de/Submersible-Without-Energy-Aquarium-Fountain/dp/B07VGQ8KJV

18. Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A., Duerig, T., & Ferrari, V. (2020). The open images dataset V4: Unified image classification, object detection, and visual relationship detection at scale. International Journal of Computer Vision, 128(7), 1956–1981. https://doi.org/10.1007/s11263-020-01316-z

19. Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., & Dollár, P. (2015). Microsoft COCO: Common Objects in Context. arXiv:1405.0312. https://doi.org/10.48550/arXiv.1405.0312

20. Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318

21. Mayer, J., Fauser, K., Schupp, J., & Locher, L. (2022). Carbonite–Team Carbonite. Proceedings of the 18th Field Robot Event 2021, 51–57. Retrieved from: https://www.fieldrobot.com/event/wp-content/uploads/2022/02/Proceedings_FRE2021.pdf

22. Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R. D., Sulser, T., Zhu, T., Ringler, C., Msangi, S., Palazzo, A., Batka, M., Magalhaes, M., Valmonte-Santos, R., Ewing, M., & Lee, D. R. (2009). Climate change: Impact on agriculture and costs of adaptation. International Food Policy Research Institute. https://doi.org/10.2499/0896295354

23. NVIDIA Corporation. (n.d.). Jetson AGX Xavier Developer Kit by NVIDIA | 945-82972-0045-000. Arrow.Com.

Retrieved March 29, 2025, from https://www.arrow.com/en/products/945-82972-0045-000/nvidia

24. Open Robotics. (2024a, January 9). actionlib—ROS Wiki. Retrieved from: https://wiki.ros.org/actionlib

25. Open Robotics. (2024b, August 31). noetic—ROS Wiki. https://wiki.ros.org/noetic

26. OpenAI. (n.d.). Overview—OpenAI API. Retrieved from: https://platform.openai.com

27. Redmon, J. (2013, 2016). Darknet: Open Source Neural Networks in C.

28. Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv:1804.02767. https://doi.org/10.48550/arXiv.1804.02767

29. Robitronic Electronic Ges.m.b.H. (n.d.). Robitronic Platinium Brushless Motor 1/8 10.5T. Robitronic RC Car Online Shop - Power for Winners. Retrieved from: https://shop.robitronic.com/en/robitronic-platinium-brushless-motor-r03204

30. Rusu, R. B., & Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China. Retrieved from: https://github.com/PointCloudLibrary/pcl

31. SICK AG. (n.d.). TiM571-2050101—TiM | SICK. Retrieved from: https://www.sick.com/us/en/catalog/products/lidar-and-radar-sensors/lidar-sensors/tim/tim571-2050101/p/p412444

32. The Qt Company. (n.d.). Qt 5.15. Retrieved from: https://doc.qt.io/qt-5/

33. Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv:2207.02696. Retrieved from: https://doi.org/10.48550/arXiv.2207.02696

34. Worldsemi. (n.d.). WS2812B.pdf. Retrieved from: https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf

Objavljeno

14.12.2025

Številka

Rubrika

Articles

Kako citirati

Mannchen, S., Mayer, J., Schőnegg, J. L., & Fauser, K. (2025). Napredne navigacijske tehnike in postopki umetne inteligence: Ključne strategije ekipe Carbonite na tekmovanju Field Robot Event 2023. Agricultura Scientia, 22(1-2). https://doi.org/10.18690/agricsci.22.1-2.2