Ingestion of Flupyradifurone, Pyraclostrobin and Fluxapyroxad Change Melipona scutellaris Behavior and Promote Individuals’ Early Mortality

Authors

DOI:

https://doi.org/10.18690/agricsci.22.1-2.3

Keywords:

biomarkers, insecticides, fungicides, side effects, stingless bees

Abstract

Pesticides are widely used in Brazilian agriculture to protect crops from target organisms. Nevertheless, pesticide use has also been shown to harm beneficial insects, such as bees. Considering the knowledge gap regarding the effects of pesticides on non-Apis species and the importance of stingless bees for ecosystems and human food production, the research aimed to evaluate the survival and behavior of Melipona scutellaris after ingestion of the active ingredients flupyradifurone, pyraclostrobin, and fluxapyroxad, individually and in combination. Therefore, foragers were collected and assigned to experimental groups according to three diets: flupyradifurone 6 ng/μL (IS), pyraclostrobin 0.1 ng/μL and fluxapyroxad 0.05 ng/μL (FN); flupyradifurone 3 ng/μL, pyraclostrobin 0.05 ng/μL, and fluxapyroxad 0.025 ng/μL (IF). The results showed that active ingredients caused early mortality in M. scutellaris foragers. Moreover, just four hours of exposure to IS was sufficient to induce symptoms similar to those caused by neonicotinoids (stumbles, uncoordinated movements, and uncontrolled proboscis extension), whereas exposure to the FN combination induced lethargy in the individuals. The data highlight that even short-term exposure to these active ingredients can cause severe damage to foragers’ physiology, compromising their ability to gather resources for the colony and affecting its overall health.

Downloads

Download data is not yet available.

Author Biographies

  • Lais Vieira Bello Inoue, São Paulo State University (UNESP) – “Júlio de Mesquita Filho”, Institute of Biosciences (IB)

    Av. 24A, 1515, Rio Claro, São Paulo, Brazil

  • Caio Eduardo da Costa Domingues, University of Maribor, Faculty of Agriculture and Life Sciences

    Pivola 10, 2311 Hoče, Slovenia

  • Francisco Inácio Paiva Ferreira, São Paulo State University (UNESP) – “Júlio de Mesquita Filho”, Institute of Biosciences (IB)

    Av. 24A, 1515, Rio Claro, São Paulo, Brazil

  • Roberta Cornélio Ferreira Nocelli, Federal University of São Carlos (UFSCar), Department of Natural Sciences, Mathematics and Education

    Anhanguera Highway, km 174, Araras, São Paulo, Brazil

  • Osmar Malaspina, São Paulo State University (UNESP) – “Júlio de Mesquita Filho”, Institute of Biosciences (IB)

    Av. 24A, 1515, Rio Claro, São Paulo, Brazil

References

1. Araújo, E. D., Costa, M., Chaud-Netto, J., & Fowler, H. G. (2004). Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Brazilian Journal of Biology, 64(3b), 563–568. Retrieved from: https://doi.org/10.1590/s1519-69842004000400003

2. Avenot, H. F., & Michailides, T. J. (2010). Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Protection, 29(7), 643–651. Retrieved from:

https://doi.org/10.1016/j.cropro.2010.02.019

3. Azevedo, F. R. & Freire, F. C. O. (2018). Tecnologia de aplicação de defensivos agrícolas. Retrieved from: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/426350

4. Baines, D., Wilton, E., Pawluk, A., de Gorter, M., & Chomistek, N. (2017). Neonicotinoids act like endocrine disrupting chemicals in newly-emerged bees and winter bees. Scientific Reports, 7(1). Retrieved from: https://doi.org/10.1038/s41598-017-10489-6

5. Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr-Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science, 58(7), 649–662. Retrieved from: https://doi.org/10.1002/ps.520

6. Batista, N. R., Farder-Gomes, C. F., Nocelli, R. C. F., & Antonialli-Junior, W. F. (2023). Effects of chronic exposure to sublethal doses of neonicotinoids in the social wasp Polybia paulista: Survival, mobility, and histopathology. Science of the Total Environment, 904, 166823. Retrieved from: https://doi.org/10.1016/j.scitotenv.2023.166823

7. Bernardes, R. C., Lima, M. A. P., Guedes, R. N. C., da Silva, C. B., & Martins, G. F. (2021). Ethoflow: Computer Vision and Artificial Intelligence-Based Software for Automatic Behavior Analysis. Sensors, 21(9), 3237. Retrieved from: https://doi.org/10.3390/s21093237

8. Brazil. (2008). Law no. 11.794, of October 8, 2008. Retrieved from: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2008/lei/l11794.htm,

9. Castor, R. E. S., Martins, V., & Silva-Zacarin, E. C. M. (2025). Impacts of flupyradifurone on the midgut and brain of the neotropical social bee Scaptotrigona postica and its behavioral effects. Environmental Toxicology and Pharmacology, 104772. Retrieved from: https://doi.org/10.1016/j.etap.2025.104772

10. Chen, J., Liu, Y.-J., Wang, Q., Zhang, L., Yang, S., Feng, W.-J., Shi, M., Gao, J., Dai, P.-L., & Wu, Y.-Y. (2024). Multiple stresses induced by chronic exposure to flupyradifurone affect honey bee physiological states. The Science of the Total Environment, 935, 173418–173418. Retrieved from: https://doi.org/10.1016/j.scitotenv.2024.173418

11. Ciarlo, T. J., Mullin, C. A., Frazier, J. L., & Schmehl, D. R. (2012). Learning Impairment in Honey Bees Caused by Agricultural Spray Adjuvants. PLoS ONE, 7(7), e40848. Retrieved from: https://doi.org/10.1371/journal.pone.0040848

12. Cullen, M. G., Thompson, L. J., Carolan, James. C., Stout, J. C., & Stanley, D. A. (2019). Fungicides, herbicides and bees: A systematic review of existing research and methods. PLOS ONE, 14(12), e0225743. Retrieved from: https://doi.org/10.1371/journal.pone.0225743

13. Domingues, C. E. C., Inoue, L. V. B., Gregorc, A., Ansaloni, L. S., Malaspina, O., & Silva-Zacarin, E. C. M. (2023). Ultrastructural Changes in the Midgut of Brazilian Native Stingless Bee Melipona scutellaris Exposed to Fungicide Pyraclostrobin.

Toxics, 11(12), 1028. Retrieved from: . https://doi.org/10.3390/toxics11121028

14. Domingues, C. E. C., Inoue, L. V. B., Silva-Zacarin, E. C. M., & Malaspina, O. (2020). Foragers of Africanized honeybee are more sensitive to fungicide pyraclostrobin than newly emerged bees. Environmental Pollution, 266, 115267. Retrieved from: https://doi.org/10.1016/j.envpol.2020.115267

15. Domingues, C. E. C., Tadei, R., Inoue, L. V. B., Silva-Zacarin, E. C. M., & Malaspina, O. (2021). Effects of larval exposure to the fungicide pyraclostrobin on the post-embryonic development of Africanized Apis mellifera workers. Environmental Advances, 4, 100069. Retrieved from: https://doi.org/10.1016/j.envadv.2021.100069

16. Duan, X., Wang, L., Wang, R., Xiong, M., Qin, G., Huang, S., & Li, J. (2023). Variation in the physiological response of adult worker bees of different ages (Apis mellifera L.) to pyraclostrobin stress. Ecotoxicology and Environmental Safety, 269, 115754–115754. Retrieved from: https://doi.org/10.1016/j.ecoenv.2023.115754

17. European Food Safety Authority (EFSA). (2018). Evaluation of the emergency authorisations granted by Member State Bulgaria for plant protection products containing clothianidin, imidacloprid or thiamethoxam 15(6). Retrieved from: https://doi.org/10.2903/sp.efsa.2018.EN-1417

18. Farder-Gomes, C. F., de Oliveira, M. A., Malaspina, O., & Nocelli, R. F. C. (2024). Exposure of the stingless bee Melipona scutellaris to imidacloprid, pyraclostrobin, and glyphosate, alone and in combination, impair its walking activity and fat body morphology and physiology. Environmental Pollution, 348, 123783. Retrieved from: https://doi.org/10.1016/j.envpol.2024.123783

19. Gilbert, J., Mathien, C., El Alaoui, H., Portelli, C., Delbac, F., & Diogon, M. (2025). Assessing the impact of co-exposure to succinate dehydrogenase inhibitor (SDHI) fungicides and the intestinal parasite Nosema ceranae in the honey bee Apis mellifera. Journal of Hazardous Materials, 492, 138175. Retrieved from: https://doi.org/10.1016/j.jhazmat.2025.138175

20. Góngora-Gamboa, C., Ruiz-Sánchez, E., Zamora-Bustillos, R., Hernández-Núñez, E., & Ballina-Gómez, H. (2025). Lethal and sublethal effects of flupyradifurone and cyantraniliprole on two neotropical stingless bee species. Ecotoxicology, 34(3), 456-466. Retrieved from:https://doi.org/10.1007/s10646-024-02848-7

21. Guo, Y., Diao, Q.-Y., Dai, P.-L., Wang, Q., Hou, C.-S., Liu, Y.-J., Zhang, L., Luo, Q.-H., Wu, Y.-Y., & Gao, J. (2021). The Effects of Exposure to Flupyradifurone on Survival, Development, and Foraging Activity of Honey Bees (Apis mellifera L.) under Field Conditions. Insects, 12(4), 357. Retrieved from: https://doi.org/10.3390/insects12040357

22. Hesselbach, H., & Scheiner, R. (2019). The novel pesticide flupyradifurone (Sivanto) affects honeybee motor abilities. Ecotoxicology, 28(3), 354–366. Retrieved from: https://doi.org/10.1007/s10646-019-02028-y

23. Hesselbach, H., Seeger, J., Schilcher, F., Ankenbrand, M., & Scheiner, R. (2020). Chronic exposure to the pesticide flupyradifurone can lead to premature onset of foraging in honeybees Apis mellifera. Journal of Applied Ecology, 57(3), 609–618. Retrieved from: https://doi.org/10.1111/1365-2664.13555

24. Hrncir, M., Schorkopf, D. L. P., Schmidt, V. M., Zucchi, R., & Barth, F. G. (2008). The sound field generated by tethered stingless bees (Melipona scutellaris): inferences on its potential as a recruitment mechanism inside the hive. Journal of Experimental Biology, 211(5), 686-698. Retrieved from: https://doi.org/10.1242/jeb.013938

25. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. (2018) Seleção de espécies de abelhas nativas para avaliação de risco de agrotóxicos. Retrieved from: https://www.ibama.gov.br/phocadownload/agrotoxic os/reavaliaca oambiental/2018/Selecao_Especies_Abelhas_N ativas_para_Avaliacao_de_Risco_de_Agrotoxicos.pdf

26. Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. (2025). Relatórios de comercialização de agrotóxicos. Retrieved from: https://www.gov.br/ibama/pt-br/assuntos/quimicos-e-biologicos/agrotoxicos/relatorios-de comercializacao-de-agrotoxicos

27. Inoue, L. V. B., Domingues, C. E. C, Lancia, B. C., Nocelli, R. C. F., & Malaspina, O. (2025). Effects of the insecticide flupyradifurone and the fungicides pyraclostrobin and fluxapyroxad on behavior and morphophysiology in Melipona scutellaris. Science of The Total Environment, 968, 178784. Retrieved from: https://doi.org/10.1016/j.scitotenv.2025.178784

28. Jacob, C. R. O., Malaquias, J. B., Zanardi, O. Z., Silva, C. A. S., Jacob, J. F. O., & Yamamoto, P. T. (2019). Oral acute toxicity and impact of neonicotinoids on Apis mellifera L. and Scaptotrigona postica Latreille (Hymenoptera: Apidae). Ecotoxicology, 28(7), 744–753. Retrieved from: https://doi.org/10.1007/s10646-019-02070-w

29. Kline, O., Adamczyk, J., & Joshi, N. K. (2025). Toxicity responses of different bee species to flupyradifurone and sulfoxaflor insecticides reveal species and sex-based variations. Science of the Total Environment, 964, 178264. Retrieved from: https://doi.org/10.1016/j.scitotenv.2024.178264

30. Lattorff, H. M. G. (2022). Increased Stress Levels in Caged Honeybee (Apis mellifera) (Hymenoptera: Apidae) Workers. Stresses, 2(4), 373-383. Retrieved from: https://doi.org/10.3390/stresses2040026

31. Michener, C. D. (2007). The bees of the world. JHU press.

32. Ministério da Agricultura, Pecuária e Abastecimento. (2025). Agrofit: Sistema de agrotóxicos fitossanitários.

Retrieved from: https://agrofit.agricultura.gov.br/agrofit_cons/princip al_agrofit_cons 33.

Nicodemo, D., Fábio Erminio Mingatto, David De Jong, Veiga, F., Marco Aurélio Tavares, William Cesar Bellini, Eduardo Festozo Vicente, & Amanda de Carvalho. (2020). Mitochondrial Respiratory Inhibition Promoted by Pyraclostrobin in Fungi is Also Observed in Honey Bees. Environmental Toxicology and Chemistry, 39(6), 1267–1272. Retrieved from: https://doi.org/10.1002/etc.4719

34. Nauen, R., Jeschke, P., Velten, R., Beck, M. E., Ebbinghaus-Kintscher, U., Thielert, W., Wölfel, K., Haas, M., Kunz, K., & Raupach, G. (2014). Flupyradifurone: a brief profile of a new butenolide insecticide. Pest Management Science, 71(6), 850–862. Retrieved from: https://doi.org/10.1002/ps.3932

35. Nogueira, D. S. (2023). Overview of Stingless Bees in Brazil (Hymenoptera: Apidae: Meliponini). EntomoBrasilis, 16, e1041–e1041. Retrieved from: https://doi.org/10.12741/ebrasilis.v16.e1041

36. OECD (1998), Test No. 213: Honeybees, Acute Oral Toxicity Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris. Retrieved from: https://doi.org/10.1787/9789264070165-en.

37. Pedro, S. R. M. (2014). The Stingless Bee Fauna In Brazil (Hymenoptera: Apidae). Sociobiology, 61(4). Retrieved from: https://doi.org/10.13102/sociobiology.v61i4.348-354

38. Raine, N. E., & Maj Rundlöf. (2024). Pesticide Exposure and Effects on Non-Apis Bees. Annual Review of Entomology, 69(1), 551–576. Retrieved from: https://doi.org/10.1146/annurev-ento-040323-020625

39. Ramalho, M., Silva, & Carvalho, C. A. L. (2007). Dinâmica de uso de fontes de pólen por Melipona scutellaris Latreille (Hymenoptera: Apidae): uma análise comparativa com Apis mellifera L. (Hymenoptera: Apidae), no Domínio Tropical Atlântico. Neotropical Entomology, 36(1), 38–45. Retrieved from: https://doi.org/10.1590/s1519-566x2007000100005

40. Real-Luna, N., Rivera-Hernández, J. E., Alcántara-Salinas, G., Rojas-Malavasi, G., Morales-Vargas, A. P., & Pérez-Sato, J. A. (2022). Las abejas sin aguijón (Tribu Meliponini) en los agroecosistemas de América Latina. Revista Mexicana de Ciencias Agrícolas, 13(2), 331–344. Retrieved from: https://doi.org/10.29312/remexca.v13i2.2866

41. Serra, R. S., Martínez, L. C., Silva, F., Santos, Carneiro, L. S., Muhammad Fiaz, & Serrão, J. E. (2023). The fungicide azoxystrobin causes histopathological and cytotoxic changes in the midgut of the honey bee Apis mellifera (Hymenoptera: Apidae). Ecotoxicology, 32(2), 234–242. Retrieved from: https://doi.org/10.1007/s10646-023-02633-y

42. Silveira, F. A., Melo, G. A., & Almeida, E. A. (2002). Abelhas

brasileiras: sistemática e identificação. Guilherme Carnevale Carmona.

43. Tomé, H. V., Ramos, G. S., Araújo, M. F., Santana, W. C., Santos, G. R., Guedes, R. N. C., ... & Oliveira, E. E. (2017). Agrochemical synergism imposes higher risk to Neotropical bees than to honeybees. Royal Society Open Science, 4(1), 160866. Retrieved from: https://doi.org/10.1098/rsos.160866

44. Tomizawa, M., & Casida, J. E. (2003). Selective Toxicity Of Neonicotinoids Attributable To Specificity Of Insect And Mammalian Nicotinic Receptors. Annual Review of Entomology, 48(1), 339–364. Retrieved from: https://doi.org/10.1146/annurev.ento.48.091801.112731

45. Tosi, S., & Nieh, J. C. (2019). Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto ® ), on honeybees. Proceedings of the Royal Society B: Biological Sciences, 286(1900), 20190433. Retrieved from: https://doi.org/10.1098/rspb.2019.0433

46. Tosi, S., & Nieh, J. C. (2017). A common neonicotinoid pesticide, thiamethoxam, alters honey bee activity, motor functions, and movement to light. Scientific Reports, 7(1). Retrieved from: https://doi.org/10.1038/s41598-017-15308-6

47. Tosi, S., Nieh, J. C., Brandt, A., Colli, M., Fourrier, J., Giffard, H., Hernández-López, J., Malagnini, V., Williams, G. R., & Simon-Delso, N. (2021). Long-term field-realistic exposure to a next-generation pesticide, flupyradifurone, impairs honey bee behaviour and survival. Communications Biology, 4(1), 1–9. Retrieved from: https://doi.org/10.1038/s42003-021-02336-2

48. US EPA. (2025). Types of Pesticide Ingredients. Retrieved from: https://www.epa.gov/ingredients-used-pesticide-products/types-pesticide-ingredients.

49. Vallejo-Marín, M. (2022). How and why do bees buzz? Implications for buzz pollination. Journal of experimental botany, 73(4), 1080-1092. Retrieved from: https://doi.org/10.1093/jxb/erab428

50. Wolowski, M., Agostini, K., Rech, A. R., Varassin, I. G., Maués, M., Freitas, L., Carneiro, L. T., Bueno, R. de O., Consolaro, H., Carvalheiro, L. G., Saraiva, A. M., & da Silva, C. I. (2019). Relatório temático sobre polinização, polinizadores e produção de alimentos no Brasil. BPBES & REBIPP. Retrieved from: https://www.bpbes.net.br/wp-content/uploads/2019/ 03/BPBES_CompletoPolinizacao-2.pdf

51. Xiong, M., Qin, G., Wang, L., Wang, R., Zhou, R., Luo, X., Lou, Q., Huang, S., Li, J., & Duan, X. (2023). Field recommended concentrations of pyraclostrobin exposure disturb the development and immune response of worker bees (Apis mellifera L.) larvae and pupae. Frontiers in Physiology, 14. Retrieved from: https://doi.org/10.3389/fphys.2023.1137264

52. Zaluski, R., Justulin, L. A., & Orsi, R. de O. (2017). Field-relevant doses of the systemic insecticide fipronil and fungicide pyraclostrobin impair mandibular and hypopharyngeal glands in nurse honeybees (Apis mellifera). Scientific Reports, 7(1). Retrieved from: https://doi.org/10.1038/s41598-017-15581-5

Downloads

Published

14.12.2025

Issue

Section

Articles

How to Cite

Inoue, L. V. B., Domingues, C. E. da C., Ferreira, F. I. P., Nocelli, R. C. F., & Malaspina, O. (2025). Ingestion of Flupyradifurone, Pyraclostrobin and Fluxapyroxad Change Melipona scutellaris Behavior and Promote Individuals’ Early Mortality. Agricultura Scientia, 22(1-2). https://doi.org/10.18690/agricsci.22.1-2.3

Most read articles by the same author(s)