Advanced Navigation and Artificial Intelligence Techniques: Team Carbonite's Winning Strategies at the Field Robot Event 2023

Authors

  • Samuel Mannchen Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen https://orcid.org/0009-0008-9041-662X
  • Jonas Mayer Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen
  • Janis Lion Schőnegg Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen
  • Klara Fauser Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen

DOI:

https://doi.org/10.18690/agricsci.22.1-2.2

Keywords:

agricultural robotics, precision agriculture, sustainability, artificial intelligence

Abstract

An approach to address current challenges in agriculture caused by climate change, the increasing global population and the loss of biodiversity is precision farming, for which agricultural robotics is a key enabler. The Field Robot Event (FRE) 2023 has challenged student teams to develop and improve autonomous agricultural robots. This paper presents the improvements to our field robot “Carbonite,” which is developed at the Schülerforschungszentrum (SFZ) Südwürttemberg. Our lightweight and compact robot design, supported by our advanced and efficient navigation algorithm, enabled our robot to quickly move through fields. Additionally, we introduced our newly developed system for targeted and precise application of water, fertilizer and herbicides, based on an intelligent gap detection algorithm to avoid wasting resources. Also, we trained an object recognition AI model based on the You Only Look Once (YOLO) models, allowing the robot to appropriately respond based on the type of obstacle. Carbonite managed to secure the first place in both the navigation task and the plant treatment task, benefiting from the lightweight design and the resulting high robot driving speed, enabling us to win the overall FRE 2023 contest.

Downloads

Download data is not yet available.

Author Biographies

  • Samuel Mannchen, Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen

    Obertorstraße 16, 88662 Überlingen, Germany

  • Jonas Mayer, Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen

    Obertorstraße 16, 88662 Überlingen, Germany

  • Janis Lion Schőnegg, Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen

    Obertorstraße 16, 88662 Überlingen, Germany

  • Klara Fauser, Schülerforschungszentrum Südwürttemberg e.V. Standort Überlingen

    Obertorstraße 16, 88662 Überlingen, Germany

References

1. ASUSTeK Computer Inc. (n.d.). EA-AC87—Support. Retrieved March 29, 2025, from https://www.asus.com/supportonly/eaac87/helpdesk_knowledge/

2. Benenson, R., Popov, S., & Ferrari, V. (2019). Large-scale interactive object segmentation with human annotators. arXiv:1903.10830. https://doi.org/10.48550/arXiv.1903.10830

3. Bjelonic, M. (2016). Leggedrobotics/darknet_ros [C++]. Robotic Systems Lab - Legged Robotics at ETH Zürich. https://github.com/leggedrobotics/darknet_ros

4. Bochkovskiy, A. (2013). AlexeyAB/darknet [C]. https://github.com/AlexeyAB/darknet

5. Bosch Sensortec GmbH. (n.d.). Smart Sensor BNO055. Bosch Sensortec. Retrieved from https://www.bosch-sensortec.com/products/smart-sensor-systems/bno055/

6. Cardinale, B. J., Duffy, J. E., Gonzalez, A., Hooper, D. U., Perrings, C., Venail, P., Narwani, A., Mace, G. M., Tilman, D., Wardle, D. A., Kinzig, A. P., Daily, G. C., Loreau, M., Grace, J. B., Larigauderie, A., Srivastava, D. S., & Naeem, S. (2012). Biodiversity loss and its impact on humanity. Nature, 486(7401), 59–67. https://doi.org/10.1038/nature11148

7. Field Robot Event. (2022, October 21). Field Robot Event 2023 in Slovenia! – Field Robot Event. https://fieldrobot.nl/event/index.php/2022/10/21/field-robot-event-goes-to-slovenia/

8. Field Robot Event. (2023a). FRE2023-RESULTS_FINAL.pdf. Field Contest 13.06.2023 – 15.06.2023 FRE 2023 Results. Retrieved from: https://fieldrobot.nl/event/wp-content/uploads/2023/06/FRE2023-RESULTS_FINAL.pdf

9. Field Robot Event. (2023b). Task 1 Navigation – Field Robot Event. Retrieved from: https://fieldrobot.nl/event/index.php/contest-hybrid/tasks-h/

10. Field Robot Event. (2023c). Task 2 treating (spraying) the plants – Field Robot Event. Retrieved from: https://fieldrobot.nl/event/index.php/contest-hybrid/task-h1/

11. Field Robot Event. (2023d). Task 3 sensing and recognizing possible obstacles – Field Robot Event. Retrieved from: https://fieldrobot.nl/event/index.php/contest-hybrid/task-h2/

12. Field Robot Event (2023e). Task 4 Static and dynamic obstacles – Field Robot Event. https://fieldrobot.nl/event/index.php/contest-hybrid/task-h3/

13. Field Robot Event (2023f). Task 5 Freestyle – Field Robot Event. Retrieved from: https://fieldrobot.nl/event/index.php/task-5-freestyle/

14. Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., & Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337–342. https://doi.org/10.1038/nature10452

15. Gil, G., Casagrande, D. E., Cortés, L. P., & Verschae, R. (2023). Why the low adoption of robotics in the farms? Challenges for the establishment of commercial agricultural robots. Smart Agricultural Technology, 3, 100069. https://doi.org/10.1016/j.atech.2022.100069

16. Intel Corporation. (n.d.). Introducing the Intel® RealSenseTM Depth Camera D455. Intel® RealSenseTM Depth and Tracking Cameras. Retrieved from: https://www.intelrealsense.com/depth-camera-d455/

17. Keenso. (n.d.). Mini-Wasserpumpe, 12 V DC, 6 W, Tauchpumpe, ohne Bürste, energiesparend, für Aquarium, Brunnen, kleine Fischteiche, Solarsystem: Amazon.de: Haustier. Retrieved from: https://www.amazon.de/Submersible-Without-Energy-Aquarium-Fountain/dp/B07VGQ8KJV

18. Kuznetsova, A., Rom, H., Alldrin, N., Uijlings, J., Krasin, I., Pont-Tuset, J., Kamali, S., Popov, S., Malloci, M., Kolesnikov, A., Duerig, T., & Ferrari, V. (2020). The open images dataset V4: Unified image classification, object detection, and visual relationship detection at scale. International Journal of Computer Vision, 128(7), 1956–1981. https://doi.org/10.1007/s11263-020-01316-z

19. Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., & Dollár, P. (2015). Microsoft COCO: Common Objects in Context. arXiv:1405.0312. https://doi.org/10.48550/arXiv.1405.0312

20. Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), 1318. https://doi.org/10.3390/su13031318

21. Mayer, J., Fauser, K., Schupp, J., & Locher, L. (2022). Carbonite–Team Carbonite. Proceedings of the 18th Field Robot Event 2021, 51–57. Retrieved from: https://www.fieldrobot.com/event/wp-content/uploads/2022/02/Proceedings_FRE2021.pdf

22. Nelson, G. C., Rosegrant, M. W., Koo, J., Robertson, R. D., Sulser, T., Zhu, T., Ringler, C., Msangi, S., Palazzo, A., Batka, M., Magalhaes, M., Valmonte-Santos, R., Ewing, M., & Lee, D. R. (2009). Climate change: Impact on agriculture and costs of adaptation. International Food Policy Research Institute. https://doi.org/10.2499/0896295354

23. NVIDIA Corporation. (n.d.). Jetson AGX Xavier Developer Kit by NVIDIA | 945-82972-0045-000. Arrow.Com.

Retrieved March 29, 2025, from https://www.arrow.com/en/products/945-82972-0045-000/nvidia

24. Open Robotics. (2024a, January 9). actionlib—ROS Wiki. Retrieved from: https://wiki.ros.org/actionlib

25. Open Robotics. (2024b, August 31). noetic—ROS Wiki. https://wiki.ros.org/noetic

26. OpenAI. (n.d.). Overview—OpenAI API. Retrieved from: https://platform.openai.com

27. Redmon, J. (2013, 2016). Darknet: Open Source Neural Networks in C.

28. Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv:1804.02767. https://doi.org/10.48550/arXiv.1804.02767

29. Robitronic Electronic Ges.m.b.H. (n.d.). Robitronic Platinium Brushless Motor 1/8 10.5T. Robitronic RC Car Online Shop - Power for Winners. Retrieved from: https://shop.robitronic.com/en/robitronic-platinium-brushless-motor-r03204

30. Rusu, R. B., & Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China. Retrieved from: https://github.com/PointCloudLibrary/pcl

31. SICK AG. (n.d.). TiM571-2050101—TiM | SICK. Retrieved from: https://www.sick.com/us/en/catalog/products/lidar-and-radar-sensors/lidar-sensors/tim/tim571-2050101/p/p412444

32. The Qt Company. (n.d.). Qt 5.15. Retrieved from: https://doc.qt.io/qt-5/

33. Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv:2207.02696. Retrieved from: https://doi.org/10.48550/arXiv.2207.02696

34. Worldsemi. (n.d.). WS2812B.pdf. Retrieved from: https://cdn-shop.adafruit.com/datasheets/WS2812B.pdf

Downloads

Published

14.12.2025

Issue

Section

Articles

How to Cite

Mannchen, S., Mayer, J., Schőnegg, J. L., & Fauser, K. (2025). Advanced Navigation and Artificial Intelligence Techniques: Team Carbonite’s Winning Strategies at the Field Robot Event 2023. Agricultura Scientia, 22(1-2). https://doi.org/10.18690/agricsci.22.1-2.2