Understanding Honey Bee (Apis mellifera) Colony Losses: A Multifactorial Perspective

Authors

  • Tamara Hribernik University of Maribor, Faculty of Agriculture and Life Sciences https://orcid.org/0009-0008-5349-8398
  • Ernest Plemenitaš Chamber of Agriculture and Forestry of Slovenia – Institute of Agriculture and Forestry Ptuj
  • Tjaša Pangerl Chamber of Agriculture and Forestry of Slovenia – Institute of Agriculture and Forestry Celje
  • Aleš Gregorc University of Maribor, Faculty of Agriculture and Life Sciences https://orcid.org/0000-0001-7988-6796

DOI:

https://doi.org/10.18690/agricsci.22.1-2.4

Keywords:

Apis mellifera, pesticides, pathogens, climate change, beekeeping management

Abstract

Bees play an essential role as pollinators of crops and wild plants thereby contributing to biodiversity. Beekeeping is an important economic and agricultural activity. However, beekeepers are faced with numerous external factors, including climate change, intensive agricultural production, the extensive use of pesticides and the high incidence of honey bee diseases. In researches’ work to date, numerous potential factors have been identified that contribute to colony population decline, reduced colony health, and colony losses. This review summarizes the most important factors affecting honey bee colonies and their health. The main causes of colony loss include pests and pathogens, environmental and beekeeping stressors, apiculture practices and pesticide residues. Reducing honey bee colony losses requires an integrated approach that recognises the multifactorial nature of the problem. Coordinated strategies should consider both direct biological threats, such as parasites and pathogens, and indirect influences, such as environmental changes, pesticide exposure and forage quality.

Downloads

Download data is not yet available.

Author Biographies

  • Tamara Hribernik, University of Maribor, Faculty of Agriculture and Life Sciences

    Pivola 10, 2311 Hoče, Slovenia

  • Ernest Plemenitaš, Chamber of Agriculture and Forestry of Slovenia – Institute of Agriculture and Forestry Ptuj

    Ormoška cesta 28, 2250 Ptuj

  • Tjaša Pangerl, Chamber of Agriculture and Forestry of Slovenia – Institute of Agriculture and Forestry Celje

    Trnoveljska cesta 1, 3000 Celje

  • Aleš Gregorc, University of Maribor, Faculty of Agriculture and Life Sciences

    Pivola 10, 2311 Hoče, Slovenia

References

1. Abdollahdokht, D., Gao, Y., Faramarz, S., Poustforoosh, A., Abbasi, M., Asadikaram, G., & Nematollahi, M. H. (2022). Conventional agrochemicals towards nano-biopesticides: An overview on recent advances. Chemical and Biological Technologies in Agriculture, 9(1), 13. https://doi.org/10.1186/s40538-021-00281-0

2. Almasri, H., Tavares, D. A., Pioz, M., Sené, D., Tchamitchian, S., Cousin, M., Brunet, J.-L., & Belzunces, L. P. (2020). Mixtures of an insecticide, a fungicide and a herbicide induce high toxicities and systemic physiological disturbances in winter Apis mellifera honey bees. Ecotoxicology Environment Safety, 203, 111013.

3. Almasri, H., Tavares, D. A., Diogon, M., Pioz, M., Alamil, M., Sené, D., Tchamitchian, S., Cousin, M., Brunet, J.-L., & Belzunces, L. P. (2021). Physiological effects of the interaction between Nosema ceranae and sequential and overlapping exposure to glyphosate and difenoconazole in the honey bee Apis mellifera. Ecotoxicology and Environmental Safety, 217, 112258. https://doi.org/https://doi.org/10.1016/j.ecoenv.2021.112258

4. Amiri, E., Strand, M. K., Rueppell, O., & Tarpy, D. R. (2017). Queen quality and the impact of honey bee diseases on queen health: potential for interactions between two major threats to colony health. Insects, 8(2), 48. https://doi.org/10.3390/insects8020048

5. Bailey, L. (1964). The ‘Isle of Wight disease’: the origin and significance of the myth. Bee World, 45(1), 32-37.

6. Beaurepaire, A., Piot, N., Doublet, V., Antunez, K., Campbell, E., Chantawannakul, P., Chejanovsky, N., Gajda, A., Heerman, M., Panziera, D., Smagghe, G., Yañez, O., De Miranda, J. R., & Dalmon, A. (2020). Diversity and global distribution of viruses of the western honey bee, Apis mellifera. Insects, 11, 239. https://doi.org/10.3390/insects11040239 7. Brittain, C., Williams, N., Kremen, C., & Klein, A.-M. (2013). Synergistic effects of non-Apis bees and honey bees for pollination services. Proceedings of the Royal Society B: Biological Sciences, 280: 20122767.

8. Brodschneider, R., Schlagbauer, J., Arakelyan, I., Ballis, A., Brus, J., Brusbardis, V., Cadahía, L., Charrière, J.-D., Chlebo, R., Coffey, M. F., Cornelissen, B., da Costa, C. A., Danneels, E., Danihlík, J., Dobrescu, C., Evans, G., Fedoriak, M., Forsythe, I., Gregorc, A., …& Gray, A. (2023). Spatial clusters of Varroa destructor control strategies in Europe. Journal of Pest Science, 96, 759-783. https://doi.org/10.1007/s10340-022-01523-2

9. Brodschneider, R., Brus, J., & Danihlík, J. (2019). Comparison of apiculture and winter mortality of honey bee colonies (Apis mellifera) in Austria and Czechia. Agriculture, Ecosystems & Environment, 274, 24-32. https://doi.org/10.1016/j.agee.2019.01.002

10. Brodschneider, R., Moosbeckhofer, R., & Crailsheim, K. (2010). Surveys as a tool to record winter losses of honey bee colonies: a two year case study in Austria and South Tyrol. Journal of Apicultural Research, 49(1), 23-30. https://doi.org/10.3896/IBRA.1.49.1.04

11. Buchori, D., Rizali, A., Priawandiputra, W., Sartiami, D., & Johannis, M. (2019). Population growth and insecticide residues of honey bees in tropical agricultural landscapes. Diversity, 12(1), 1. https://doi.org/10.3390/d12010001

12. Calatayud-Vernich, P., Calatayud, F., Simó, E., & Picó, Y. (2018). Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environmental Pollution, 241, 106-114. https://doi.org/10.1016/j.envpol.2018.05.062

13. Calatayud-Vernich, P., VanEngelsdorp, D., & Picó, Y. (2019). Beeswax cleaning by solvent extraction of pesticides. MethodsX, 6, 980-985. https://doi.org/10.1016/j.mex.2019.04.022

14. Castilhos, D., Bergamo, G. C., Gramacho, K. P., & Gonçalves, L. S. (2019). Bee colony losses in Brazil: a 5-year online survey. Apidologie, 50, 263-272. https://doi.org/10.1007/s13592-019-00642-7

15. Căuia, E., Siceanu, A., Vișan, G. O., Căuia, D., Colța, T., & Spulber, R. A. (2020). Monitoring the field-realistic exposure of honeybee colonies to neonicotinoids by an integrative approach: A case study in Romania. Diversity, 12(1), 24. https://doi.org/10.3390/d12010024

16. Chaimanee, V., Kasem, A., Nuanjohn, T., Boonmee, T., Siangsuepchart, A., Malaithong, W., Sinpoo, C., Disayathanoowat, T., & Pettis, J. S. (2021). Natural extracts as potential control agents for Nosema

ceranae infection in honeybees, Apis mellifera. Journal of Invertebrate Pathology, 186, 107688.

17. Christen, V. (2023). Different effects of pesticides on transcripts of the endocrine regulation and energy metabolism in honeybee foragers from different colonies. Scientific Reports, 13, 1985.

18. Clermont, A., Eickermann, M., Kraus, F., Hoffmann, L., & Beyer, M. (2015). Correlations between land covers and honey bee colony losses in a country with industrialized and rural regions. Science of Total Environment, 532, 1-13.

19. Critchlow, B. P. (1904). Gleanings in bee culture. Bee Culture Magazine, 32, 692.

20. Crowl, T. A., Crist, T. O., Parmenter, R. R., Belovsky, G., & Lugo, A. E. (2008). The spread of invasive species and infectious disease as drivers of ecosystem change. Frontiers in Ecology and the Environment, 6, 238-246.

21. Degrandi-Hoffman, G., Ahumada, F., Probasco, G., & Schantz, L. (2012). The effects of beta acids from hops (Humulus lupulus) on mortality of Varroa destructor (Acari: Varroidae). Experimental and Applied Acarology, 58(4), 407-421. https://doi.org/10.1007/s10493-012-9593-2

22. Dively, G. P., Embrey, M. S., Kamel, A., Hawthorne, D. J., & Pettis, J. S. (2015). Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS One, 10, e0118748.

23. Dynes, T. L., Berry, J. A., Delaplane, K. S., Brosi, B. J., & de Roode, J. C. (2019). Reduced density and visually complex apiaries reduce parasite load and promote honey production and overwintering survival in honey bees. PLoS One, 14(5), e0216286.

24. Ellis, J. D., Evans, J. D., & Pettis, J. (2010). Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. Journal of Apicultural Research, 49(1), 134-136. https://doi.org/10.3896/IBRA.1.49.1.30

25. Evans, J. D., & Spivak, M. (2010). Socialized medicine: Individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology, 103, S62-S72. https://doi.org/https://doi.org/10.1016/j.jip.2009.06.019

26. Fakhimzadeh, K., Ellis, J. D., & Hayes, J. W. (2011). Physical control of varroa mites (Varroa destructor): the effects of various dust materials on varroa mite fall from adult honey bees (Apis mellifera) in vitro. Journal of Apicultural Research, 50(3), 203-211. https://doi.org/10.3896/IBRA.1.50.3.04

27. Fassbinder, C., Grodnitzky, J., & Coats, J. (2002). Monoterpenoids as possible control agents for Varroa destructor. Journal of Apicultural Research, 41(3-4), 83-88. https://doi.org/10.1080/00218839.2002.11101073

28. Feás Sánchez, X., & Charles, R. J. (2019). Notes on the nest architecture and colony composition in winter of the yellow-legged asian hornet, Vespa velutina Lepeletier 1836 (Hym.: Vespidae), in its introduced habitat in Galicia (NW Spain). Insects, 10(8), 237. https://www.mdpi.com/2075-4450/10/8/237 29. Finley, J., Camazine, S., & Frazier, M. (1996). The epidemic of honey bee colony losses during the 1995-1996 season. American Bee Journal,136(11), 805–808.

30. Fleming, G. (1871). Animal Plagues: Their history, nature, and prevention; Chapman and Hall: London, UK, p. 548. https://www.biodiversitylibrary.org/item/71537/s10340-018-1042-5

31. Forfert, N., Natsopoulou, M. E., Paxton, R. J., & Moritz, R. F. (2016). Viral prevalence increases with regional colony abundance in honey bee drones (Apis mellifera L). Infection, Genetics and Evolution, 44, 549-554. https://doi.org/10.1016/j.meegid.2016.07.017

32. Fries, I. (1991). Treatment of sealed honey bee brood with formic acid for control of Varroa jacobsoni. American Bee Journal, 131, 313-314.

33. Fries, I., Martin, R., Meana, A., García-Palencia, P., & Higes, M. (2006). Natural infections of Nosema ceranae in European honey bees. Journal of Apicultural Research, 45(4), 230-233. https://doi.org/10.3896/IBRA.1.45.4.13

34. Frizzera, D., Strobl, V., Yañez, O., Seffin, E., Zanni, V., Annoscia, D., Neumann, P., & Nazzi, F. (2025). Interactions between agrochemicals and parasites endangering insect populations. Environment International, 202, 109664. https://doi.org/https://doi.org/10.1016/j.envint.2025.109664

35. Genersch, E., Von Der Ohe, W., Kaatz, H., Schroeder, A., Otten, C., Büchler, R., ... & Rosenkranz, P. (2010). The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie, 41(3), 332-352. https://doi.org/10.1051/apido/2010014

36. Giacobino, A., Molineri, A., Cagnolo, N. B., Merke, J., Orellano, E., Bertozzi, E., ... & Signorini, M. (2016). Queen replacement: The key to prevent winter colony losses in Argentina. Journal of Apicultural Research, 55(4), 335-341.

37. Gill, R. J., Ramos-Rodriguez, O., & Raine, N. E. (2012). Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature, 491(7422), 105-108. https://doi.org/10.1038/nature11585

38. Gil-Lebrero, S., Quiles-Latorre, F. J., Ortiz-López, M., Sánchez-Ruiz, V., Gámiz-López, V., & Luna-Rodríguez, J. J. (2017). Honey Bee Colonies Remote Monitoring System. Sensors, 17(1), 55. https://doi.org/10.3390/s17010055

39. Gisder, S., Aumeier, P., & Genersch, E. (2009). Deformed wing virus: replication and viral load in mites (Varroa destructor). Journal of General Virology, 90(Pt 2), 463-467. https://doi.org/10.1099/vir.0.005579-0

40. Glavinic, U., Rajkovic, M., Vunduk, J., Vejnovic, B., Stevanovic, J., Milenkovic, I., & Stanimirovic, Z. (2021).

Effects of agaricus bisporus mushroom extract on honey bees infected with Nosema ceranae. Insects, 12(10), 915. https://doi.org/10.3390/insects12100915

41. Goulson, D. (2013). REVIEW: An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50, 977–987. https://doi.org/10.1111/1365-2664.12111

42. Goulson, D., Nicholls, E., Rotheray, E., & Botias, C. (2015a). Qualifying pollinator decline evidence Response. Science, 348, 982–982. https://doi.org/10.1126/science.348.6238.982

43. Goulson, D., Nicholls, E., Botías, C., & Rotheray, E. L. (2015b). Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science, 347, 1255957.

44. Gradish, A. E., Van Der Steen, J., Scott-Dupree, C. D., Cabrera, A. R., Cutler, G. C., Goulson, D., Klein, O., Lehmann, D. M., Lückmann, J., O’Neill, B., Raine, N. E., Sharma, B., & Thompson, H. (2019). Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and bumble bees (Hymenoptera: Apidae): Implications for risk assessments. Environmental Entomology, 48, 12–21. https://doi.org/10.1093/ee/nvy168

45. Gray, A., Brodschneider, R., Adjlane, N., Ballis, A., Brusbardis, V., Charrière, J. D., ... & Soroker, V. (2019). Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. Journal of Apicultural Research, 58(4), 479-485. https://doi.org/10.1080/00218839.2019.1615661

46. Gregorc, A., & Bowen, I. D. (1998). Histopathological and histochemical changes in honeybee larvae (Apis mellifera L.) after infection with Bacillus larvae, the causative agent of American foulbrood disease. Cell Biology International, 22, 137–144. https://doi.org/10.1006/cbir.1998.0232

47. Gregorc, A., & Bowen, I. D. (1999). In situ localization of heat-shock and histone proteins in honey-bee (Apis mellifera L.) larvae infected with Paenibacillus larvae. Cell Biology International, 23, 211–218. https://doi.org/10.1006/cbir.1999.0344

48. Gregorc, A., & Bowen, I. D. (2000). Histochemical characterization of cell death in honeybee larvae midgut after treatment with Paenibacillus larvae, Amitraz and Oxytetracycline. Cell Biology International, 24, 319–324. https://doi.org/https://doi.org/10.1006/cbir.1999.0490

49. Gregorc, A., Alburaki, M., Rinderer, N., Sampson, B., Knight, P. R., Karim, S., & Adamczyk, J. (2018a). Effects of coumaphos and imidacloprid on honey bee (Hymenoptera: Apidae) lifespan and antioxidant gene regulations in laboratory experiments. Scientific Reports, 8, 15003. https://doi.org/10.1038/s41598-018-33348-4

50. Gregorc, A., Alburaki, M., Sampson, B., Knight, P. R., & Adamczyk, J. (2018b). Toxicity of selected acaricides to honey bees (Apis mellifera) and varroa (Varroa destructor Anderson and Trueman) and their use in controlling varroa within honey bee colonies. Insects, 9(2), 55. https://doi.org/10.3390/insects9020055 51. Gregorc, A., Evans, J. D., Scharf, M., & Ellis, J. D. (2012). Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). Journal of Insect Physiology, 58, 1042–1049. https://doi.org/10.1016/j.jinsphys.2012.03.015

52. Gregorc, A., Pogačnik, A., & Bowen, I. D. (2004). Cell death in honeybee (Apis mellifera) larvae treated with oxalic or formic acid. Apidologie, 35, 453–460. https://doi.org/10.1051/apido:2004037

53. Gregorc, A., Silva-Zacarin, E. C. M., Carvalho, S. M., Kramberger, D., Teixeira, E. W., & Malaspina, O. (2016). Effects of Nosema ceranae and thiametoxam in Apis mellifera: A comparative study in Africanized and Carniolan honey bees. Chemosphere,147, 328–336. https://doi.org/10.1016/j.chemosphere.2015.12.030

54. Gregorc, A. (2020). Monitoring of honey bee colony losses: A special issue. Diversity, 12(10), 403. https://doi.org/10.3390/d12100403

55. Gregorc, A., & Planinc, I. (2001). Acaricidal effect of oxalic acid in honeybee (Apis mellifera) colonies. Apidologie, 32(4), 333-340. https://doi.org/10.1051/apido:2001133

56. Gregorc, A., & Sampson, B. (2019). Diagnosis of varroa mite (Varroa destructor) and sustainable control in honey bee (Apis mellifera) colonies—A review. Diversity, 11(12). https://doi.org/10.3390/d11120243

57. Guo, S., Feng, D., Li, Y., Liu, L., & Tang, J. (2024). Innovations in chemical degradation technologies for the removal of micro/nano-plastics in water: A comprehensive review. Ecotoxicology and Environmental Safety, 271, 115979. https://doi.org/https://doi.org/10.1016/j.ecoenv.2024.115979

58. Hallmann, C. A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., & de Kroon, H. (2017). More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One, 12, e0185809.

59. Harriet, J., Campá, J. P., Grajales, M., Lhéritier, C., Pajuelo, A. G., Mendoza-Spina, Y., & Carrasco-Letelier, L. (2017). Agricultural pesticides and veterinary substances in Uruguayan beeswax. Chemosphere, 177, 77-83. https://doi.org/10.1016/j.chemosphere.2017.02.131

60. Höcherl, N., Siede, R., Illies, I., Gätschenberger, H., & Tautz, J. (2012). Evaluation of the nutritive value of maize for honey bees. Journal of Insect Physiology, 58, 278–285.https://doi.org/https://doi.org/10.1016/j.jinsph ys.2011.12.001

61. Hung, K.-L. J., Kingston, J. M., Albrecht, M., Holway, D. A., & Kohn, J. R. (2018). The worldwide importance of honey bees as pollinators in natural habitats. Proceedings of the Royal Society B: Biological Sciences, 285(1870), 20172140. https://doi.org/doi:10.1098/rspb.2017.2140

62. Insolia, L., Molinari, R., Rogers, S. R., Williams, G. R., Chiaromonte, F., & Calovi, M. (2022). Honey bee colony loss linked to parasites, pesticides and extreme weather across the United States. Scientific Reports, 12(1), 20787. https://doi.org/10.1038/s41598-022-24946-4

63. Jack, C. J., & Ellis, J. D. (2021). Integrated pest management control of Varroa destructor (Acari: Varroidae), the most damaging pest of (Apis mellifera L. (Hymenoptera: Apidae)) colonies. Journal of Insect Science, 21(5), 6. https://doi.org/10.1093/jisesa/ieab058

64. Jacques, A., Laurent, M., Consortium, E., Ribière-Chabert, M.; Saussac, M., Bougeard, S., Budge, G. E., Hendrikx, P., & Chauzat, M. P. (2017). A pan-European epidemiological study reveals honey bee colony survival depends on beekeeper education and disease control. PLoS One, 12, e0172591.

65. Kady, C., Chedid, A. M., Kortbawi, I., Yaacoub, C., Akl, A., Daclin, N., Trousset, F., Pfister, F., & Zacharewicz, G. (2021). IoT-driven workflows for risk management and control of beehives. Diversity, 13(7), 296. https://doi.org/10.3390/d13070296

66. Kang, Y., Guo, J., Wu, T., Han, B., Liu, F., Chu, Y., Wang, Q., Gao, J., & Dai, P. (2025). Insecticide and pathogens co-exposure induces histomorphology changes in midgut and energy metabolism disorders on Apis mellifera. Pesticide Biochemistry and Physiology, 211, 106414. https://doi.org/https://doi.org/10.1016/j.pestbp .2025.106414

67. Khalifa, S. A. M., Elshafiey, E. H., Shetaia, A. A., El-Wahed, A. A. A., Algethami, A. F., Musharraf, S. G., AlAjmi, M. F., Zhao, C., Masry, S. H. D., Abdel-Daim, M. M., Halabi, M. F., Kai, G., Al Naggar, Y., Bishr, M., Diab, M. A. M., & El-Seedi, H. R. (2021). Overview of bee pollination and its economic value for crop production. Insects, 12(8), 688. https://www.mdpi.com/2075-4450/12/8/688

68. Kim, D. J., Woo, R. M., Kim, K. S., & Woo, S. D. (2023). Screening of entomopathogenic fungal culture extracts with honeybee nosemosis inhibitory activity. Insects, 14(6), 538. https://doi.org/10.3390/insects14060538

69. Kishi, S., & Goka, K. (2017). Review of the invasive yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Japan and its possible chemical control. Applied Entomology and Zoology, 52(3), 361-368. https://doi.org/10.1007/s13355-017-0506-z

70. Korená Hillayová, M., Korený, Ľ., & Škvarenina, J. (2022). The local environmental factors impact the infestation of bee colonies by mite Varroa destructor. Ecological Indicators, 141, 109104.

71. Kuchling, S., Kopacka, I., Kalcher-Sommersguter, E., Schwarz, M., Crailsheim, K., & Brodschneider, R. (2018). Investigating the role of landscape composition on honey bee colony winter mortality: A long-term analysis. Scientific Reports, 8, 12263. 72. Laurino, D., Lioy, S., Carisio, L., Manino, A., & Porporato, M. (2019). Vespa velutina: An alien driver of honey bee colony losses. Diversity, 12(1). https://doi.org/10.3390/d12010005

73. Le Conte, Y., Ellis, M., & Ritter, W. (2010). Varroa mites and honey bee health: Can varroa explain part of the colony losses? Apidologie, 41, 353–363. https://doi.org/10.1051/apido/2010017

74. LeBlanc, B. W., Eggleston, G., Sammataro, D., Cornett, C., Dufault, R., Deeby, T., & St. Cyr, E. (2009). Formation of hydroxymethylfurfural in domestic high-fructose corn syrup and its toxicity to the honey bee (Apis mellifera). Journal of Agricultural and Food Chemistry, 57(16), 7369-7376. https://doi.org/10.1021/jf9014526

75. Leza, M., Herrera, C., Marques, A., Roca, P., Sastre-Serra, J., & Pons, D. G. (2019). The impact of the invasive species Vespa velutina on honeybees: A new approach based on oxidative stress. Science of The Total Environment, 689, 709-715. https://doi.org/10.1016/j.scitotenv.2019.06.511

76. Lima, C. G., Sofia Vaz, A., Honrado, J. P., Aranha, J., Crespo, N., & Vicente, J. R. (2022). The invasion by the yellow-legged hornet: A systematic review. Journal for Nature Conservation, 67, 126173.

77. Lin, C.-Y., Lin, Y.-C., Lu, Y.-H., Chen, S.-J., Lin, Y.-H., Tseng, Y.-K., Lin, Y.-T., Wu, Y.-L., & Huang, R.-N. (2025). Synergistic impacts of propargite exposure and deformed wing virus infection on the health of western honey bees. Ecotoxicology and Environmental Safety, 289, 117430. https://doi.org/https://doi.org/10.1016/j.ecoenv.2024.117430

78. Macedo, P. A., Wu, J., & Ellis, M. D. (2002). Using inert dusts to detect and assess varroa infestations in honey bee colonies. Journal of Apicultural Research, 41(1-2), 3-7. https://doi.org/10.1080/00218839.2002.1 1101062

79. Malagoli, D., & Gregorc, A. (2010). Autophagy and its physiological relevance in arthropods. Autophagy, 6, 575–588. https://doi.org/10.4161/auto.6.5.11962

80. Marín-García, P. J., Peyre, Y., Ahuir-Baraja, A. E., Garijo, M. M., & Llobat, L. (2022). The role of Nosema ceranae (microsporidia: Nosematidae) in honey bee colony losses and current insights on treatment. Veterinary Sciences, 9, 130. https://doi.org/10.3390/vetsci9030130

81. Martinello, M., Manzinello, C., Borin, A., Avram, L. E., Dainese, N, Giuliato, Oberreiter, H., & Brodschneider, R. (2020). Austrian COLOSS survey of honey bee colony winter losses 2018/19 and analysis of hive management practices. Diversity, 12, 99. https://doi.org/10.3390/d12030099

82. Mazur, E. D., Czopowicz, M., & Gajda, A. M. (2022). Two faces of the screened bottom boards—an ambiguous influence on the honey bee winter colony loss rate.

Insects, 13, 1128. https://doi.org/10.3390/insects13121128

83. Mduda, C. A., Rikohe, I. F., Hussein, J. M., & Muruke, M. H. (2025). Characterization of Axestotrigona ferruginea and Apis mellifera honeys from different geographical origins. Food and Humanity, 4, 100516.

84. Mitchell, E., Mulhauser, B., Mulot, M., Mutabazi, A., Glauser, G., & Aebi, A. (2017). A worldwide survey of neonicotinoids in honey. Science, 358, 109-111. https://doi.org/10.1126/science.aan3684

85. Morawetz, L., Köglberger, H., Griesbacher, A., Derakhshifar, I., Crailsheim, K., Brodschneider, R., & Moosbeckhofer, R. (2019). Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PloS One, 14(7), e0219293.

86. Mullin, C. A., Frazier, M., Frazier, J. L., Ashcraft, S., Simonds, R., vanEngelsdorp, D., & Pettis, J. S. (2010). High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS One, 5(3), e9754. https://doi.org/10.1371/journal.pone.0009754

87. Nicodemo, D., Maioli, M. A., Medeiros, H. C. D., Guelfi, M., Balieira, K. V. B., De Jong, D., & Mingatto, F. E. (2014). Fipronil and imidacloprid reduce honeybee mitochondrial activity. Environmental Toxicology and Chemistry, 33(9), 2070-2075. https://doi.org/10.1002/etc.2655

88. Nicolson, S. W., Human, H., & Pirk, C. W. W. (2022). Honey bees save energy in honey processing by dehydrating nectar before returning to the nest. Scientific Reports, 12, 16224.

89. Oberreiter, H., & Brodschneider, R. (2020). Austrian COLOSS survey of honey bee colony winter losses 2018/19 and analysis of hive management practices. Diversity, 12(3), 99. https://doi.org/10.3390/d12030099

90. Overturf, K. A., Steinhauer, N., Molinari, R., Wilson, M. E., Watt, A. C., Cross, R. M., vanEngelsdorp, D., Williams, G. R., & Rogers, S. R. (2022). Winter weather predicts honey bee colony loss at the national scale. Ecological Indicators, 145, 109709.

91. Papaefthimiou, C., Pavlidou, V., Gregorc, A., & Theophilidis, G. (2002). The action of 2, 4-dichlorophenoxyacetic acid on the isolated heart of insect and amphibia. Environmental Toxicology and Pharmacology, 11(2), 127-140. https://doi.org/10.1016/S1382-6689(01)00113-2

92. Paudel, Y., Mackereth, R., Hanley, R., & Qin, W. (2015). Honey bees (Apis mellifera L.) and pollination issues: Current status, impacts and potential drivers of decline. Journal of Agricultural Science, 7, 93. https://doi.org/10.5539/jas.v7n6p93

93. Payne, A. N., Walsh, E. M., & Rangel, J. (2019). Initial exposure of wax foundation to agrochemicals causes negligible effects on the growth and winter survival of incipient honey bee (Apis mellifera) colonies. Insects, 10(1), 19. https://doi.org/10.3390/insects10010019 94. Pellett, F. C. (1938). History of American beekeeping. Ames, Iowa: Collegiate Press.

95. Potts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. (2010). Global pollinator declines: trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345–353. https://doi.org/10.1016/j.tree.2010.01.007

96. Rademacher, E., Harz, M., & Schneider, S. (2015). The development of HopGuard® as a winter treatment against Varroa destructor in colonies of Apis mellifera. Apidologie, 46(6), 748-759. https://doi.org/10.1007/s13592-015-0363-0

97. Rehan, S. M., Leys, R., & Schwarz, M. P. (2013). First evidence for a massive extinction event affecting bees close to the KT boundary. PLoS One, 8(10), e76683.

98. Requier, F., Leyton, M. S., Morales, C. L., Garibaldi, L. A., Giacobino, A., Porrini, M. P., Rosso-Londoño, J. M., Velarde, R. A., Aignasse, A., Aldea-Sánchez, P., Allasino, M. L., Arredondo, D., Audisio, C., Cagnolo, N. B., Basualdo, M., Branchiccela, B., Calderón, R. A., Castelli, L., Castilhos, D., … & Antúnez, K. (2024). First large-scale study reveals important losses of managed honey bee and stingless bee colonies in Latin America. Scientific Reports, 14, 10079.

99. Requier, F., Rome, Q., Chiron, G., Decante, D., Marion, S., Menard, M., Muller, F., Villemant, C., & Henry, M. (2019). Predation of the invasive asian hornet affects foraging activity and survival probability of honey bees in Western Europe. Journal of Pest Science, 92(2), 567-578. https://doi.org/10.1007/s10340-018-1063-0

100. Ricigliano, V. A., Mott, B. M., Floyd, A. S., Copeland, D. C., Carroll, M. J., & Anderson, K. E. (2018). Honey bees overwintering in a southern climate: longitudinal effects of nutrition and queen age on colony-level molecular physiology and performance. Scientific Reports, 8(1), 10475.

101. Ritter, W. (1981). Varroa disease of the honeybee Apis Mellifera. Bee World, 62(4), 141-153. https://doi.org/10.1080/0005772X.1981.11097838

102. Rodríguez-Flores, M. S., Seijo-Rodríguez, A., Escuredo, O., & Seijo-Coello, M. C. (2019). Spreading of Vespa velutina in northwestern Spain: influence of elevation and meteorological factors and effect of bait trapping on target and non-target living organisms. Journal od Pest Science, 92, 557–565. https://doi.org/10.1007/s10340-018-1042-5

103. Rondeau, S., & Raine, N. E. (2022). Fungicides and bees: a review of exposure and risk. Environment International, 165, 107311. https://doi.org/10.1016/j.envint.2022.107311

104. Schulte, P., Alegret, L., Arenillas, I., Arz, J., Barton, P., Bown, P., Bralower, T., Christeson, G., Claeys, P., Cockell, C., Collins, G., Deutsch, A., Goldin, T., Goto, K., Grajales-

Nishimura, J., Grieve, R., Gulick, S., Johnson, K., Kiessling, W., & Willumsen, P. (2010). The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene. Science, 327, 1214-1218. https://doi.org/10.1126/science.1177265

105. Silva-Zacarin, E. C., & Gregorc, A. (2006). In situ localization of heat-shock proteins and cell death labelling in the salivary gland of acaricide-treated honeybee larvae. Apidologie, 37, 1–9. https://doi.org/10.1051/apido:2006030

106. Siviter, H., & Muth, F. (2020). Do novel insecticides pose a threat to beneficial insects? Proceedings of the Royal Society B: Biological Sciences, 287. https://doi.org/10.1098/rspb.2020.1265

107. Smith, K. M., Loh, E. H., Rostal, M. K., Zambrana-Torrelio, C. M., Mendiola, L., & Daszak, P. (2013). Pathogens, pests, and economics: drivers of honey bee colony declines and losses. Ecohealth, 10(4), 434-445. https://doi.org/10.1007/s10393-013-0870-2

108. Somme, L., Vanderplanck, M., Michez, D., Lombaerde, I., Moerman, R., Wathelet, B., Wattiez, R., Lognay, G., & Jacquemart, A.-L. (2015). Pollen and nectar quality drive the major and minor floral choices of bumble bees. Apidologie, 46, 92–106. https://doi.org/10.1007/s13592-014-0307-0

109. Spivak, M., & Gilliam, M. (1998). Hygienic behaviour of honey bees and its application for control of brood diseases and varroa. Bee World, 79(4), 169-186. https://doi.org/10.1080/0005772X.1998.11099408

110. Suchail, S., Guez, D., & Belzunces, L. P. (2000). Characteristics of imidacloprid toxicity in two Apis mellifera subspecies. Environmental Toxicology and Chemistry, 19(7), 1901-1905. https://doi.org/10.1002/etc.5620190726

111. Switanek, M., Crailsheim, K., Truhetz, H., & Brodschneider, R. (2017). Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Science of the Total Environment, 579, 1581-1587. https://doi.org/10.1016/j.scitotenv.2016.11.178

112. Tarpy, D. R., Lengerich, E. J., & Pettis, J. S. (2013). Idiopathic brood disease syndrome and queen events as precursors of colony mortality in migratory beekeeping operations in the eastern United States. Preventive veterinary Medicine, 108(2-3), 225-233. https://doi.org/10.1016/j.prevetmed.2012.08.004

113. Tesovnik, T., Zorc, M., Ristanić, M., Glavinić, U., Stevanović, J., Narat, M., & Stanimirović, Z. (2020). Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. Environmental Pollution, 256, 113443. https://doi.org/https://doi.org/10.1016/j.envpol. 2019.113443

Downloads

Published

14.12.2025

Issue

Section

Articles

How to Cite

Hribernik, T., Plemenitaš, E., Pangerl, T., & Gregorc, A. (2025). Understanding Honey Bee (Apis mellifera) Colony Losses: A Multifactorial Perspective. Agricultura Scientia, 22(1-2). https://doi.org/10.18690/agricsci.22.1-2.4

Most read articles by the same author(s)