Approximate, numerical and experimental investigations of a water hammer in Vrhovo bulb-turbines hydropower plant

Authors

DOI:

https://doi.org/10.18690/jet.18.4.%25p.2025

Keywords:

hydroelectric power plant, bulb turbine, water hammer, computation, field test, comparison study

Abstract

This paper investigates effectiveness and accuracy of approximate and numerical water hammer models in the Sava River bulb turbine hydropower plants. The approximate and numerical rigid water hammer models are introduced first. The computational results are compared with the results of measurements in Vrhovo hydropower plant. Comparisons of the computed and measured results are examined for emergency shutdown case. The water hammer is controlled by appropriate adjustment of the guide vane and runner blade closing/opening laws. There is a good agreement between the approximate and numerical, and measured results. 

Downloads

Download data is not yet available.

Author Biographies

  • Anton Bergant, Litostroj Power d.o.o., Faculty of Mechanical Engineering, Ljubljana, Slovenia

    Ljubljana, Slovenia: E-mail: anton.bergant@litostrojpower.eu

  • Jošt Perkolj, Litostroj Power d.o.o., Ljubljana, Slovenia

    Ljubljana, Slovenia: E-mail: jost.pekolj@litostrojpower.eu

References

1] E. Vagnoni, D. Gezer, I. Anagnostopoulos, G. Cavazzini, E. Doujak, M. Hočevar, P. Rudolf: The new role of sustainable hydropower in flexible energy systems and its technical evolution through innovation, Renewable Energy, Vol. 230, Paper 120832, 2024

[2] A. Bergant, J. Mazij, J. Pekolj: Theoretical and experimental investigations of a water hammer in Sava River Kaplan turbine hydropower plants, Journal of Energy Technology, Vol. 17, Iss. 4, p.p. 11 - 20, 2024

[3] M.H. Chaudhry: Applied Hydraulic Transients, Springer, 2014

[4] A. Bergant, J. Mazij, J. Pekolj, K. Urbanowicz: Issues related to water hammer in Francis-turbine hydropower schemes: A review, Energies, Vol. 18, Paper 6404, 2025

[5] S. Pejović, A.P. Boldy, D. Obradović: Guidelines to Hydraulic Transient Analysis, Gower Technical Press Ltd., 1987

[6] IEC TS 63111: Hydraulic Turbines, Storage Pumps and Pump-Turbines – Hydraulic Transient Analysis, Design Considerations and Testing, International Electrotechnical Commission, 2025

[7] E. B. Wylie, V. L. Streeter: Fluid Transients in Systems, Prentice Hall, 1993

[8] J. Fašalek, S. Rakčević: Air valves and control of the Kaplan turbine during transients, 13th IAHR Symposium on Hydraulic Machinery and Cavitation, Montréal, 1986

[9] J.H. Gummer: Predicting draft tube water column separation in Kaplan turbine, The International Journal of Hydropower & Dams, Vol. 10, Iss. 3, p.p. 80 - 83, 2003

[10] B. Đorđević: Korišćenje Vodnih Snaga. Objekti Hidroelektrana (Use of Water Power. Hydraulic Power Plant Facilities), Građevinski fakultet and Naučna knjiga, 1984 (in Serbian)

[11] G.I. Krivčenko, N.N. Aršenevski, E.V. Kvjatovskaja, V.M. Klabukov: Gidromehaničeskie Perehodnie Processi v Gidroenergetičeskih Ustanovkah (Hydromechanical Transient Regimes in Hydroelectric Power Plants), Energija, 1975 (in Russian)

[12] A. Bergant, T. Kolšek: Developments in bulb turbine three-dimensional water hammer modelling, 21st IAHR Symposium on Hydraulic Machinery and Cavitation, Lausanne, 2002

[13] A. Bergant, T. Kolšek: Comparison of one- and three-dimensional models for water hammer analysis in bulb turbine hydropower plants, 9th International Conference on Pressure Surges, Chester, 2004

[14] S. Salehi, H. Nilsson, E. Lillberg, N. Edh: An in-depth numerical analysis of transient flow field in a Francis turbine during shutdown, Renewable Energy, Vol. 179, p.p. 2322 - 2347, 2021

[15] A. Bergant, Z. Rek, K. Urbanowicz: Numerical 1D and 3D water hammer investigations in a simple pipeline apparatus, Strojniški vestnik – Journal of Mechanical Engineering, Vol. 71, Iss. 5-6, p.p. 149 - 156, 2025

[16] C. Trivedi, O.G. Dahlhaug: A comprehensive review of verification and validation techniques applied to hydraulic turbines, International Journal of Fluid Machinery and Systems, Vol. 12, Iss. 4, p.p. 345 - 367, 2019

[17] J.H. Ferziger, M. Perić: Computational Methods for Fluid Dynamics, Springer-Verlag, 1999

[18] ICCM GmbH: Comet Version 2.00. User Manual, Institute of Computational Mechanics, 2000

[19] G. Kolman, M. Mikoš, M. Povž: Ribji prehodi na hidroenergetskih pregradah v Sloveniji (Fish passages on hydroelectric power dams in Slovenia), Varstvo narave, Vol. 24, p.p. 85 - 96, 2010 (in Slovene)

[20] IEC 60545: Guide for Commissioning, Operation and Maintenance of Hydraulic Turbines, International Electrotechnical Commission, 1976

[21] IEC 62006: Hydraulic Machines—Acceptance Tests of Small Hydroelectric Installations, International Electrotechnical Commission, 2010

[22] H.W. Coleman, W.G. Steele: Experimentation and Uncertainty Analysis for Engineers, John Wiley and Sons, 1989

Downloads

Published

18.02.2026

How to Cite

Bergant, A., & Perkolj, J. (2026). Approximate, numerical and experimental investigations of a water hammer in Vrhovo bulb-turbines hydropower plant. Journal of Energy Technology, 18(4), 189-202. https://doi.org/10.18690/jet.18.4.%p.2025

Most read articles by the same author(s)