Evaluation of the mechanical properties of steel under elevated temperature conditions

Authors

DOI:

https://doi.org/10.18690/jet.18.4.%25p.2025

Keywords:

steel, tensile test, temperature, chemical analysis, stress-strain diagram, alloying elements

Abstract

This paper presents the influence of elevated temperatures on the mechanical properties of steel with varying iron content and alloying compositions. The paper combines chemical analysis and high-temperature tensile testing to examine how microstructure, chemical composition and temperature affect the yield strength, tensile strength and ductility of steel. Samples of two thicknesses (0.63 mm and 0.50 mm) and three iron levels (85 wt%, 90 wt %, and 97 wt%) were analysed and classified based on their chemical composition. Tensile tests were performed in accordance with ISO 6892-2 within the temperature range of 90 °C to 250 °C, using 20 °C increments. The findings highlight the combined effect of temperature and alloying chemistry on the hightemperature performance of steel, providing valuable insights for material selection in thermally demanding engineering applications. 

Downloads

Download data is not yet available.

Author Biographies

  • Klemen Sredenšek, University of Maribor, Faculty of Energy Technology

    Krško, Slovenia: Email: klemen.sredensek@um.si

  • Zdravko Praunseis, University of Maribor, Faculty of Energy Technology

    Krško, Slovenia: Email: zdravko.praunseis@um.si

  • Luka Barbič, Krško Nuclear Power Plant

    Krško, Slovenia: Email:  lbarbic@nek.si 

References

[1] Brnic, J., Turkalj, G., Canadija, M., Lanc, D., & Brcic, M. (2015). Study of the Effects of High Temperatures on the Engineering Properties of Steel 42CrMo4. High Temperature Materials and Processes, 34(1), 27–34. https://doi.org/10.1515/htmp-2014-0011

[2] Chen, X., Lu, J., Lu, L., & Lu, K. (2005). Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scripta Materialia, 52(10), 1039–1044. https://doi.org/10.1016/j.scriptamat.2005.01.023

[3] Grässel, O., Krüger, L., Frommeyer, G., & Meyer, L. (2000). High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application. International Journal of Plasticity, 16(10- 11), 1391–1409. https://doi.org/10.1016/s0749-6419(00)00015-2

[4] Liang, Z., Wang, W., & Wang, Z. (2022). Effect of cold-form and tensile strain rate on mechanical properties of Q345 steel at elevated temperatures. Journal of Constructional Steel Research, 191, Article 107192. https://doi.org/10.1016/j.jcsr.2022.107192

[5] Liu, X., Lan, S., & Ni, J. (2014). Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Materials & Design, 59, 50–62. https://doi.org/10.1016/j.matdes.2014.02.003

[6] Nikulin, I., Kipelova, A., & Kaibyshev, R. (2012). Effect of high-temperature exposure on the mechanical properties of 18Cr-8Ni-W-Nb-V-N stainless steel. Materials Science and Engineering aStructural Materials Properties Microstructure and Processing, 554, 61–66. https://doi.org/10.1016/j.msea.2012.06.011

[7] Reardon, A. C. (2011). High temperature tensile behavior of carbon steels (Second ed.). ASM International.

[8] Schneider, M., & Laplanche, G. (2021). Effects of temperature on mechanical properties and deformation mechanisms of the equiatomic CrFeNi medium-entropy alloy. Acta Materialia, 204, Article 116470. https://doi.org/10.1016/j.actamat.2020.11.012

[9] Sohn, S., Hong, S., Lee, J., Suh, B., Kim, S., Lee, B., Kim, N., & Lee, S. (2015). Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels. Acta Materialia, 100, 39–52. https://doi.org/10.1016/j.actamat.2015.08.027

[10] Verhoeven, J. D. (2007). High temperature tensile behavior of carbon steels. ASM International.

Downloads

Published

18.02.2026

How to Cite

Sredenšek, K., Praunseis, Z., & Barbič, L. (2026). Evaluation of the mechanical properties of steel under elevated temperature conditions. Journal of Energy Technology, 18(4), 231-250. https://doi.org/10.18690/jet.18.4.%p.2025

Most read articles by the same author(s)

<< < 1 2 3 > >>