Biomass Gasification Potential for Slovenia’s Green Transition
E-Mobility
DOI:
https://doi.org/10.18690/jet.18.2.85-98.2025Keywords:
green transition, renewable energy, forest biomass, biomass gasification, e-mobilityAbstract
In 2024, approximately fifty percent of the total kilometers driven by passenger vehicles in Slovenia were attributed to diesel-powered automobiles, underscoring the persistent dependence of the transportation sector on fossil fuels, which are major contributors to greenhouse gas emissions and global warming. Research further substantiates that the transportation sector constitutes the nation's predominant source of greenhouse gas emissions. In this context, e-mobility emerges as a key strategy for Slovenia’s green transition in transportation. Additionally, biomass gasification represents a sustainable and environmentally friendly energy pathway that could support the country in achieving its environmental targets, while promoting the principles of the circular economy.
Downloads
References
[1] Erakhrumen, A. A. (2012). Biomass Gasification: Documented Information for Adoption/Adaptation and Further Improvements toward Sustainable Utilisation of Renewable Natural Resources. ISRN Renewable Energy, 2012, 1–8. https://doi.org/10.5402/2012/536417
[2] Agencija za energijo (2024). Poročilo o stanju na področju energetike v Sloveniji.
[3] Kashif, U., Abbas, S., Kousar, S., & Lu, H. (2025). Linking of bio-energy and carbon neutrality: Navigating economic policy uncertainty and climate change policy in the USA. Energy, 136012. https://doi.org/10.1016/j.energy.2025.136012
[4] Trivedi, K., Sharma, A., Kanabar, B. K., Arunachalam, K. D., & Gautam, S. (2024). Comparative Analysis of Coal and Biomass for Sustainable Energy Production: Elemental Composition, Combustion Behavior and Co-Firing Potential. Water, Air, & Soil Pollution, 235(11). https://doi.org/10.1007/s11270-024-07509-3
[5] U. S. Environmental Protection Agency, Energy and Environmental Analysis, Inc., an ICF International Company, & Eastern Research Group, Inc. (ERG). (2007). Biomass Combined Heat and Power Catalog of Technologies: Vol. v.1.1. https://www.epa.gov/sites/default/files/2015-07/documents/biomass_combined_heat_and_power_catalog_of_technologies_v.1.1.pdf
[6] IRENA (2022), Renewable power generation costs in 2022, International Renewable Energy Agency, Abu Dhabi.
[7] Benitez, J. P., Sonny, D., Colson, D., Dierckx, A., & Ovidio, M. (2025). Hydroelectric power plant and upstream fish migration: evaluation of the efficiency of a behavioural barrier. Journal of Ecohydraulics, 1–14. https://doi.org/10.1080/24705357.2025.2533868
[8] Carotenuto, A., Di Fraia, S., Uddin, M. R., & Vanoli, L. (2022). Comparison of Combustion and Gasification for Energy Recovery from Residual Woody Biomass. International Journal of Heat and Technology, 40(4), 888–894. https://doi.org/10.18280/ijht.400404
[9] Farzad, S., Mandegari, M. A., & Görgens, J. F. (2016). A critical review on biomass gasification, co-gasification, and their environmental assessments [Review Paper]. Biofuel Research Journal, 483–495. https://doi.org/10.18331/BRJ2016.3.4.3
[10] Tend, O. (n.d.). Forest cover - Slovenia Forest Service. Slovenia Forest Service. https://www.zgs.si/en/slovenian-forests/forest-cover#:~:text=Forests%20are%20the%20dominant%20landscape,forested%20area%20is%20in%20Prekmurje.
[11] Forest area (ha) by AREA and YEAR-PxWeb. (n.d.). PxWeb. https://pxweb.stat.si/SiStatData/pxweb/en/Data/Data/1673105S.px/table/tableViewLayout2/
[12] Growing stock and annual gross increment by STOCK AND INCREMENT, TYPE OF WOOD, MEASURES and YEAR-PxWeb. (n.d.). PxWeb. https://pxweb.stat.si/SiStatData/pxweb/en/Data/Data/1673110S.px/table/tableViewLayout2/
[13] Slovenia Forest Service & Ministry of Agriculture, Forestry and Food of Slovenia. (2021). PUBLIC FORESTRY SERVICE IN SLOVENIA: FORESTS AND FORESTRY IN SLOVENIA. In Slovenia. https://www.zgs.si/assets/uploads/files/vsebine/1/8/3/zgs_gozd_in_gozdarstvo_v_sloveniji_zlo_a4_en_press-compressed.pdf
[14] Removals (m3) by REMOVALS, TYPE OF TREES and YEAR-PxWeb. (n.d.). PxWeb. https://pxweb.stat.si/SiStatData/pxweb/en/Data/Data/1673135S.px/table/tableViewLayout2/
[15] Saarinen, N., Kankare, V., Yrttimaa, T., Viljanen, N., Honkavaara, E., Holopainen, M., Hyyppä, J., Huuskonen, S., Hynynen, J., & Vastaranta, M. (2020). Assessing the effects of thinning on stem growth allocation of individual Scots pine trees. Forest Ecology and Management, 474, 118344. https://doi.org/10.1016/j.foreco.2020.118344
[16] Verschuyl, J., Riffell, S., Miller, D., & Wigley, T. B. (2010). Biodiversity response to intensive biomass production from forest thinning in North American forests – A meta-analysis. Forest Ecology and Management, 261(2), 221–232. https://doi.org/10.1016/j.foreco.2010.10.010
[17] Ott, J. E., 1, Kilkenny, F. F., 1, Jain, T. B., 2, USDA Forest Service, & Rocky Mountain Research Station. (2023). Fuel treatment effectiveness at the landscape scale: a systematic review of simulation studies comparing treatment scenarios in North America. Fire Ecology, 2–29. https://doi.org/10.1186/s42408-022-00163-2
[18] Pugh, T. a. M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., & Calle, L. (2019). Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences, 116(10), 4382–4387. https://doi.org/10.1073/pnas.1810512116
[19] Ministry of the Environment and Spatial Planning of the Republic of Slovenia. (2024). National inventory document 2024: GHG emissions inventories 1986–2022 [Submission under the United Nations Framework Convention on Climate Change]. Government of the Republic of Slovenia.
[20] Number of vehicle kilometres and average number of vehicle kilometres per vehicle by TYPE OF VEHICLE, AGE OF VEHICLE, YEAR and MEASURES-PxWeb. (n.d.). PxWeb. https://pxweb.stat.si/SiStatData/pxweb/en/Data/Data/2282005S.px/
[21] European Union. (2023). Regulation (EU) 2023/1804 of the European Parliament and of the Council of 13 September 2023 on deploying alternative fuels infrastructure, and repealing Directive 2014/94/EU. Official Journal of the European Union, L 229, 1–85. https://eur-lex.europa.eu/eli/reg/2023/1804/oj
[22] Food and Agriculture Organization of the United Nations. (1997). Wood: Hardwoods and softwoods. In Introduction to wood as a material (Chapter 2).
[23] Asmadi M., Kawamoto H., Saka S. (2009) Gasification characteristics of some softwood and hardwood species.
[24] FORESTS and forestry in Slovenia. (2020). In M. Čater & P. Železnik (Eds.), Studia Forestalia Slovenica.
[25] Čufar, K., 1, Gorišek, Ž., 1, Merela, M., 1, Kropivšek, J., 1, Gornik Bučar, D., 1, & Straže, A., 1. (2017). Properties of Beechwood and its Use. In Les/Wood: Vol. 66 (Issue No. 1, pp. 27–39) [Journal-article]. https://doi.org/10.26614/les-wood.2017.v66n01a03
[26] Camarero Lema, S. I. (2022). IMPACT OF CHANGES IN THE SYNGAS-BIOCHAR MIX AND PLANT SIZE ON THE ECONOMICS AND ENVIRONMENTAL PERFORMANCE OF DISTRIBUTED BIOMASS GASIFICATION SYSTEMS. In J. Alfaro & P. Vaishnav, University of Michigan.
[27] Abouemara, K., Shahbaz, M., McKay, G., & Al-Ansari, T. (2024). The review of power generation from integrated biomass gasification and solid oxide fuel cells: Current status and future directions. Fuel, 360, 130511
[28] Frisinghelli, P., Zachl, A., Buchmayr, M., Gruber, J., Anca–Couce, A., Scharler, R., & Hochenauer, C. (2025). Extending the operational limit for fuel water content in a stratified downdraft gasifier from 15 to 22 m% by increasing the reactor height. Fuel, 395, 135167. https://doi.org/10.1016/j.fuel.2025.135167
[29] Aguado, R., Escámez, A., Jurado, F., & Vera, D. (2023). Experimental assessment of a pilot-scale gasification plant fueled with olive pomace pellets for combined power, heat, and biochar production. Fuel, 344, 128127. https://doi.org/10.1016/j.fuel.2023.128127
[30] Roise, J. P., Catts, G., Hazel, D., Hobbs, A., & Chris Hopkins. (2013). Balancing biomass harvesting and drying tactics with delivered payment practice.
[31] Helmers, E., Marx, P., & Institut für angewandtes Stoffstrommanagement (IfaS) am Umwelt-Campus Birkenfeld, Trier University of Applied Sciences. (2012). Electric cars: technical characteristics and environmental impacts. In Environmental Sciences Europe [Journal-article]. http://www.enveurope.com/content/24/1/14
[32] Morselli, N., Puglia, M., Ottani, F., Pedrazzi, S., Noussan, M., Laveneziana, L., Prussi, M., Talluri, G., Allesina, G., & Tartarini, P. (2024). Gasification of agricultural residues to support the decarbonization of the transport sector via electricity generation: a case study. Journal of Physics. https://doi.org/10.1088/1742-6596/2893/1/012001
Downloads
Published
Issue
Section
License
Copyright (c) 2025 University of Maribor, University of Maribor Press

This work is licensed under a Creative Commons Attribution 4.0 International License.