AN APPLICATION OF STATISTICAL CHAIN THEORIES ON THERMODYNAMIC PROPERTIES OF BINARY AND TERNARY HYDROCARBON MIXTURES
DOI:
https://doi.org/10.18690/jet.2.1.85-102.2009Keywords:
statistical thermomdynamics, thermomechanics, chain theory, refrigerationAbstract
This paper discusses a mathematical model for computing the thermodynamic properties for binaryand ternary mixturesof propane, nͲbutane and isobutane intheir fluid phase with the aid of statistical chain theory. The constants required computing the characteristic temperatures of rotation, electronic state etc., and the moments of inertia are analytically obtained by applying knowledge of the atomic structure of the molecule. The procedure for calculating essential thermodynamic properties such as pressure, speed of sound, the JouleͲ Thomson coefficient, compressibility, enthalpyand thermal expansion coefficient is presented in the paper. This paper will discuss, forth efirst time, the application of statistical chaintheory and accuracy for binar yandternary mixture samong propane, nbutaneandiso butane, in their entire fluid phases for all important thermodynamic properties. To calculate the thermodynamic properties of the Lennard-Joneschains, we have used the Liu-Li-Luand Tang-Lu models. The thermodynamic properties of the Lennard-Jones mixtures are obtained using the one-fluid theory. Inrecent years, thermodynamic the ories based on statistical thermodynamics have been rapidly developing; fluids with chain bonding and association have also received
muchattention. Interests for these fluids are prompted by the factt hatt hey cover much wider
rangeofrealfluidsthansphericalones.Agoodtheoryforthesefluidswillbeverybeneficialto
chemical engineering applications by reducing the number of parameters and making them
morephysicallymeaningfulandmorepredictable.Intechnicalpractice,energyprocessesareof
vitalimportance.Inordertodesigndevicesinthisfield,itisnecessarytobefamiliarwiththe
equilibriumandnonequilibriumpropertiesofstateinsingleͲandtwoͲphaseenvironmentsfor
pure refrigerants and their mixtures. To calculate the thermodynamic properties of real fluid,
theLiuͲLiͲLu(LLL)(revisedCotterman)equationofstatebasedonsimpleperturbationtheory
and the SAFTͲVR equation of state for LJ chain fluid was applied. To compare the
thermodynamic properties of real fluid obtained by the SAFT theory we used the REFPROP
model.
Downloads
References
Avsec,J.,Watanabe,K.:Statisticalapproachtocalculatethermodynamicpropertiesfor
propane.Int.J.thermophys.,March2005,vol.26,no2,pp.453Ͳ470.
Avsec,J.,Watanabe,K:Anapproachtocalculatethermodynamicpropertiesofmixtures
includingpropane,nͲbutaneandisobutane.Int.J.thermophys.,2005,vol.26,no6,pp.
Ͳ1780.
Münster,A:StatisticalThermodynamics,SpringerͲVerlag,NewYork.,1974.
Lucas,K.,1992,AppliedStatisticalThermodynamics,SpringerͲVerlag,NewYork.
Gray,C.G.,Gubbins,K.E.,1984,TheoryofMolecularFluids,ClarendonPress,Oxford.
McClelland,B.J.,1980,StatisticalThermodynamics,Chapman&Hall,London.
Avsec,Jurij,Marēiē,Milan.Approachforcalculatingthermophysicalpropertieswiththe
help of statistical thermodynamics, J. thermophys. heat transf., JulyͲSeptember 2002,
vol.16,no.3,str.455Ͳ462.
Avsec,J.,AStudyofAssociatingLennardͲJonesChainsforHydrocarbons,8thAIAA/ASME
JointThermophysicsandHeatTransferConference,AIAAPaper2002Ͳ3339.
Tang,Y.,Lu,B.C.ͲY.,AnalyticalDescriptionoftheLennardͲJonesFluidandItsApplication,
AIChEJournal,1997,Vol.43,No.9,pp.2215Ͳ2226.
Tang,Y.,Lu,B.C.ͲY.,AnalyticalEquationofStateforLennardͲJonesMixtures,FluidPhase
Equilibria,1998,Vol.146,pp.73Ͳ92.
Tang, Y., Lu, B. C.ͲY., A Study of Associating LennardͲJones Chains by a New Reference
RadialDistributionFunction,FluidPhaseEquilibria,Vol.171,2000,pp.27Ͳ44.
Liu, Z.ͲP., Li, Y.ͲG., Lu, J.ͲF., Comparison of Equation of State for Pure LennardͲJones
FluidsandMixtureswithMolecularSimulation,FluidPhaseequilibria,Vol173,2000,pp.
Ͳ209.
Chapman,W.G.,Gubbins,K.E.,Jackson,G.,Radosz,M.,NewReferenceEquationofState
forAssociatingLiquids,Ind.Eng.Chem.Res.,Vol.29,No.8,1990,pp.1709Ͳ1721.
Condo,P.D.,Radosz,M.,EquationsofStateforPolymers,FluidPhaseEquilibria,Vol.117,
,pp.1Ͳ10.
Johnson, J.K., Gubbins, K.E., Phase Equilibria for Associating LennardͲJones Fluids from
TheoryandSimulation,MolecularPhysics,Vol.77,No.6.,1992,pp.1033Ͳ1053.
Wei Y. S., Sadus, R.J., Equations of State for the Calculation of FluidͲPhase Equilibria,
Equations of State for the Calculation of FluidͲPhase Equilibria, AIChE Journal, Vol. 46,
No.1,2000,pp.169Ͳ196.
Banaszak, M., Chen, C.K., Radosz, M., Copolymer SAFT Equation of State.
Thermodynamic Perturbation Theory Extended to Heterobonded Chains,
Macromolecules,Vol.29,No.20,1996,pp.6481Ͳ6486.
Huang,S.H.,Radosz,M.,EquationofStateforSmall,Large,PolydisperseandAssociating
Molecules,Ind.Eng.Chem.Res.,Vol.29,No.11,1990,pp.2284Ͳ2294.
Davies,L.A.,GilͲVillergas,A.,Jackson,G.,DescribingthePropertiesofChainsofSegments
InteractingViaSoftͲCorePotentialsofVariableRangewiththeSAFTͲVRApproach,Int.J.
Thermophys.,Vol.19,No.3,1998.
Chapman, W.G., Jackson, G., Gubbins, K.E., Phase Equilibria of Associating Fluids,
MolecularPhysics,Vol.65,No.5,1988,pp.1057Ͳ1079.
Huang,S.H.,Radosz,M.,EquationofStateforSmall,Large,PolydisperseandAssociation
Molecules, Extension to Fluid Mixtures, Ind. Eng. Chem. Res., Vol. 30, No. 8, 1991, pp.
Ͳ2005.
Chen C.ͲK., Banaszak, M., Radosz, M., Statistical Associating Fluid Theory Equation of
State with LennardͲJones Reference Applied to Pure and Binary nͲAlkane Systems, J.
Phys.Chem.B,Vol.102,No.13,1998,pp.2427Ͳ2431.
Jackson, G., Chapman, W.G., Gubbins, K.E., Phase Equilibria of Associating Fluids,
MolecularPhysics,Vol.65,No.1,1988,pp.1Ͳ31.
Kiselev,S.B.,Ely,J.F.,CrossoverSAFTEquationofState:ApplicationforNormalAlkanes,
Ind.Eng.Chem.Res.,Vol.38,No.12,1999,pp.4993Ͳ5004.
Müller,E.A.,Gubbins,K.E.,MolecularͲBasedEquationsofStateforAssociatingFluids:A
ReviewofSAFTandRelatedApproaches,Ind.Eng.Chem.Res.,Vol.40,No.10,2001,pp.
Ͳ2211.
Cotterman,R.L.,Prausnitz,J.M.m,MolecularThermodynamicsforFluidsatLowandHigh
Densities,AIChEJournal,Vol.32,No.1,1986,pp.1799Ͳ1811.
Mansoori,G.A.,Carnahan,N.F.,Starling,K.E.,Leland,T.W.,EquilibriumThermodynamic
Properties of the Mixtures of Hard Spheres, J. Chem. Phys., Vol. 54, No. 4, 1971, pp.
Ͳ1525.
Bellamy, L.J., 1980, The Infrared Spectra of Complex Molecules, Chapman & Hall,
London.
HerzbergG.,1966,ElectronicSpectraofPolyatomicMolecules,VanNostrandReinhold
Company,London.Toronto,Melbourne.
Herzberg, G., 1984, Infrared and Raman Spectra of Polyatomic Molecules, Van
NostrandReinholdCompany,NewYork.
Hirschfelder,O.O., Curtiss, C.F., Bird, R.B., 1954. Molecular Theory of Gases and
Liquids,JohnWiley&Sons,London.
Avsec, J., Watanabe, K., Marēiē, M., An Application of Statistical Chain Theories on
ThermodynamicPropertiesofHydrocarbonRefrigerants,PaperpresentedatICCTIUPAC
Conference,Rostock,Germany.
Miyamoto, H., Watanabe, K., 2000. A Thermodynamic Property Model for FluidͲPhase
Propane.Int.J.ofThermophys.,2000,Vol.21,No.5,pp.1045Ͳ1072.
Miyamoto, H., Watanabe, K., A Thermodynamic Property Model for FluidͲPhase nͲ
Butane.Int.J.Thermophys.,2001,Vol.22,No.2,pp.459Ͳ475.
Miyamoto; H., Watanabe, K., A Thermodynamic Property Model for FluidͲPhase
Isobutane,InternationalJournalofThermophysicsVol.23,No.2,2002,pp.:477Ͳ499.
Miyamoto; H., Watanabe, K., HelmholtzͲType Equations of State for Binary and/or
Ternary Hydrocarbon Mixtures of Propane, nͲButane, and isobutane, 5th IIR Gustav
LororentzenConferenceSept.16to20inChina,2002.
Johnson,J.K.,Müller,E.A.,Gubbins,K.E.,EquationofStateforLennardͲJonesChains,J.
Phys.Chem.,Vol.98,No.25,1994,pp.6413Ͳ6419.