Primerjalna analiza jakosti in smeri podnebnih sprememb v Evropi od pliocena do antropocena

  • Danijel Ivajnšič 1. Univerza v Mariboru, Filozofska fakulteta, Oddelek za geografijo, Maribor, Slovenija; 2. Univerza v Mariboru, Fakulteta za naravoslovje in matematiko, Oddelek za biologijo, Maribor, Slovenija https://orcid.org/0000-0003-4419-5295
  • Daša Donša 1. Univerza v Mariboru, Fakulteta za naravoslovje in matematiko, Oddelek za biologijo; Maribor Slovenija; 2. Kmetijski inštitut Slovenije, Oddelek za varstvo rastlin; Ljubljana, Slovenija https://orcid.org/0000-0003-0987-169X
Ključne besede: povprečna letna višina padavin, povprečna letna temperatura zraka, Change Vector Analysis (CVA), Non-metric Multi-Dimensional Scaling (NMDS), Paleoclim, CHELSA

Povzetek

Razumevanje paleo-podnebnih sprememb na Zemlji je ključno za pripravo globalnih podnebnih modelov, ki napovedujejo podnebje v 21. stoletju, hkrati pa te spremembe predstavljajo pomembno gonilo recentnih vzorcev biodiverzitete. V prispevku z vektorsko analizo (CVA) obravnavamo spremembe povprečne letne temperature zraka in količine padavin v Evropi na podlagi baz PaleoClim in CHELSA, od pliocena do konca 21. stoletja. Osredotočamo se na regionalne podobnosti in razlike v jakosti in smeri sprememb. Rezultati poudarjajo naravno dinamiko podnebja in služijo kot umeritev za napovedi prihodnjih sprememb, ki so osnova za trenutne in prihodnje prilagoditvene strategije v Evropi.

Prenosi

Podatki o prenosih še niso na voljo.

Biografije avtorja

Danijel Ivajnšič, 1. Univerza v Mariboru, Filozofska fakulteta, Oddelek za geografijo, Maribor, Slovenija; 2. Univerza v Mariboru, Fakulteta za naravoslovje in matematiko, Oddelek za biologijo, Maribor, Slovenija

E-mail: dani.ivajnsic@um.si

Daša Donša, 1. Univerza v Mariboru, Fakulteta za naravoslovje in matematiko, Oddelek za biologijo; Maribor Slovenija; 2. Kmetijski inštitut Slovenije, Oddelek za varstvo rastlin; Ljubljana, Slovenija

E-mail: dasa.donsa1@um.si

Literatura

Araújo, M. B., Nogués‐Bravo, D., Diniz‐Filho, J. A. F., Haywood, A. M., Valdes, P. J., & Rahbek, C. (2008). Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 31(1), 8–15.

Bahar, I. (2020). Podnebne spremembe skozi geološka obdobja, vzroki in posledice. In Mednarodna konferenca podnebne spremembe (pp. 68–81). https://podnebne.splet.arnes.si/files/2020/06/Mednarodna_konferenca_podnebne_spremembe.pdf

Bartoli, G., Hönisch, B., & Zeebe, R. E. (2011). Atmospheric CO₂ decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography, 26(4), PA002055. https://doi.org/10.1029/2010PA002055

Božič Nosan, T. (2020). Paleoklimatske spremembe. In Mednarodna konferenca podnebne spremembe (pp. 82–88). https://podnebne.splet.arnes.si/files/2020/06/Mednarodna_konferenca_podnebne_spremembe.pdf

Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C., & Haywood, A. M. (2018). PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data, 5, 180254. https://doi.org/10.1038/sdata.2018.254

Brown, J. L., & Knowles, L. L. (2012). Spatially explicit models of dynamic histories: Examination of the genetic consequences of Pleistocene glaciation and recent climate change on the American Pika. Molecular Ecology, 21(15), 3757–3775.

Brun, P., Zimmermann, N. E., Hari, C., Pellissier, L., & Karger, D. N. (2022). CHELSA-BIOCLIM+: A novel set of global climate-related predictors at kilometre-resolution (1.0) [Geotiff, PDF]. EnviDat. https://doi.org/10.16904/ENVIDAT.332

Clark Labs. (2022). TerrSet 2020 Geospatial Monitoring and Modeling Software [Software]. Clark Labs. https://clarklabs.org/terrset/

Crutzen, P. J. (2006). The “Anthropocene.” In E. Ehlers & T. Krafft (Eds.), Earth System Science in the Anthropocene (pp. 13–18). Springer-Verlag. https://doi.org/10.1007/3-540-26590-2_3

Dolan, A. M., Haywood, A. M., Hunter, S. J., Tindall, J. C., Dowsett, H. J., Hill, D. J., & Pickering, S. J. (2015). Modelling the enigmatic Late Pliocene Glacial Event—Marine Isotope Stage M2. Global and Planetary Change, 128, 47–60. https://doi.org/10.1016/j.gloplacha.2015.02.001

Dowsett, H. J., Robinson, M. M., Haywood, A. M., Salzmann, U., Hill, D., Sohl, L., Chandler, M., Williams, M., Foley, K., & Stoll, D. K. (2010). The PRISM3D paleoenvironmental reconstruction. Stratigraphy, 7(2–3), 123–139. https://doi.org/10.29041/strat.07.2.03

EuroStat. (2024). EuroStat GISCO. EuroStat. https://ec.europa.eu/eurostat/web/gisco

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016

Fordham, D. A., Akçakaya, H. R., Alroy, J., Saltré, F., Wigley, T. M., & Brook, B. W. (2016). Predicting and mitigating future biodiversity loss using long-term ecological proxies. Nature Climate Change, 6(10), 909–916.

Fordham, D. A., Brook, B. W., Moritz, C., & Nogués-Bravo, D. (2014). Better forecasts of range dynamics using genetic data. Trends in Ecology & Evolution, 29(8), 436–443.

Fordham, D. A., Saltré, F., Haythorne, S., Wigley, T. M. L., Otto‐Bliesner, B. L., Chan, K. C., & Brook, B. W. (2017). PaleoView: A tool for generating continuous climate projections spanning the last 21,000 years at regional and global scales. Ecography, 40(11), 1348–1358. https://doi.org/10.1111/ecog.03031

Gradstein, F. M., Ogg, J. G., Schmitz, M. D., & Ogg, G. M. (2020). Geologic time scale 2020. Elsevier.

Hausfather, Z. (2018, April 19). Explainer: How ‘Shared Socioeconomic Pathways’ explore future climate change. CarbonBrief. https://www.carbonbrief.org/explainer-how-shared-socioeconomic-pathways-explore-future-climate-change/

Haywood, A. M., & Valdes, P. J. (2004). Modelling Pliocene warmth: Contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 218(3–4), 363–377. https://doi.org/10.1016/S0012-821X(03)00685-X

HCMGIS. (2024, January 12). HCMGIS. QGIS Python Plugins Repository. https://plugins.qgis.org/plugins/HCMGIS/#plugin-versions

Hill, D. J. (2015). The non-analogue nature of Pliocene temperature gradients. Earth and Planetary Science Letters, 425, 232–241. https://doi.org/10.1016/j.epsl.2015.05.044

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4(1), 170122. https://doi.org/10.1038/sdata.2017.122

Knowles, L. L., Carstens, B. C., & Keat, M. L. (2007). Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence. Current Biology, 17(11), 940–946.

Legendre, P., & Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia, 129, 271–280.

Lunt, D. J., Haywood, A. M., Schmidt, G. A., Salzmann, U., Valdes, P. J., & Dowsett, H. J. (2010). Earth system sensitivity inferred from Pliocene modelling and data. Nature Geoscience, 3(1), 60–64. https://doi.org/10.1038/ngeo706

Mayewski, P. A., Rohling, E. E., Curt Stager, J., Karlén, W., Maasch, K. A., Meeker, L. D., Meyerson, E. A., Gasse, F., Van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R. R., & Steig, E. J. (2004). Holocene climate variability. Quaternary Research, 62(3), 243–255. https://doi.org/10.1016/j.yqres.2004.07.001

NASA. (2020, February 27). Milankovitch (Orbital) Cycles and Their Role in Earth’s Climate. NASA Science. https://science.nasa.gov/science-research/earth-science/milankovitch-orbital-cycles-and-their-role-in-earths-climate/

Oksanen, J., Kindt, R., Legendre, P., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2008). The vegan package. Community ecology package [Software]. http://r-forge.r-project.org/projects/vegan/

Ordonez, A., & Svenning, J.-C. (2015). Geographic patterns in functional diversity deficits are linked to glacial-interglacial climate stability and accessibility. Global Ecology and Biogeography, 24(7), 826–837.

Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H., Hu, A., & CAPE Last Interglacial Project Members. (2006). Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science, 311(5768), 1751–1753. https://doi.org/10.1126/science.1120808

PaleoClim. (2024). PaleoClim methods. PaleoClim. http://www.paleoclim.org/methods/

Prothero, D. R., & Dott, R. H. (2010). Evolution of the Earth. Academia.

R Development Core Team. (2023). R: A language and environment for statistical computing [Software]. R Foundation for Statistical Computing. http://www.r-project.org

Rosauer, D. F., & Jetz, W. (2015). Phylogenetic endemism in terrestrial mammals. Global Ecology and Biogeography, 24(2), 168–179.

Saltré, F., Rodríguez-Rey, M., Brook, B. W., Johnson, C. N., Turney, C. S., Alroy, J., Cooper, A., Beeton, N., Bird, M. I., & Fordham, D. A. (2016). Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nature Communications, 7(1), 10511.

Saltzman, B. (2002). Dynamical paleoclimatology: Generalized theory of global climate change (Let. 80). Academic Press.

Sandel, B., Arge, L., Dalsgaard, B., Davies, R. G., Gaston, K. J., Sutherland, W. J., & Svenning, J.-C. (2011). The influence of Late Quaternary climate-change velocity on species endemism. Science, 334(6056), 660–664.

Scherrer, D., & Koerner, C. (2009). Infra-red thermometry of alpine landscapes challenges climatic warming projections. Global Change Biology, 16(9), 2602–2613.

Shokry, G., Anguelovski, I., Connolly, J. J. T., Maroko, A., & Pearsall, H. (2022). “They didn’t see it coming”: Green resilience planning and vulnerability to future climate gentrification. Housing Policy Debate, 32(1), 211–245. https://doi.org/10.1080/10511482.2021.1944269

Summerhayes, C. P., & Zalasiewicz, J. (2018). Global warming and the Anthropocene. Geology Today, 34(5), 194–200. https://doi.org/10.1111/gto.12247

Van Daalen, K. R., Romanello, M., Rocklöv, J., Semenza, J. C., Tonne, C., Markandya, A., Dasandi, N., Jankin, S., Achebak, H., Ballester, J., Bechara, H., Callaghan, M. W., Chambers, J., Dasgupta, S., Drummond, P., Farooq, Z., Gasparyan, O., Gonzalez-Reviriego, N., Hamilton, I., … Lowe, R. (2022). The 2022 Europe report of the Lancet Countdown on health and climate change: Towards a climate resilient future. The Lancet Public Health, 7(11), e942–e965. https://doi.org/10.1016/S2468-2667(22)00197-9

Objavljeno
2024-06-30
Kako citirati
Ivajnšič D., & Donša D. (2024). Primerjalna analiza jakosti in smeri podnebnih sprememb v Evropi od pliocena do antropocena. Revija Za Geografijo, 65-86. https://doi.org/10.18690/rg.19.1.4446
Številka
Rubrike
Članki