Analysis of the Attitude of Hungarian HR Professionals to Artificial Intelligence
Povzetek
Upravljanje človeških virov (HRM) je ena najpomembnejših temeljnih dejavnosti organizacije. S širjenjem novih tehnologij in programskih aplikacij se je treba zavedati, da mora tudi upravljanje človeških virov postati zrelejše in v ta namen uporabljati nove tehnološke smernice. Umetna inteligenca (UI) je eden od takšnih obetavnih tehnoloških trendov, ki bo verjetno spremenil obstoječe metode upravljanja človeških virov. Ta članek preučuje stališča, ki jih umetna inteligenca vzbuja med kadrovskimi strokovnjaki iz prakse, in ocenjuje možnosti za praktično uporabo teh tehnologij. Raziskava v obliki vprašalnika je bila izvedena med madžarskimi strokovnjaki za kadre, kar je omogočilo zbiranje podatkov iz prve roke. Raziskava je bila izvedena pozimi leta 2021 z uporabo postopka vzorčenja po metodi snežne kepe. Vprašalnik je vseboval predvsem vprašanja z Likertovo lestvico. Rezultati raziskave kažejo, da imajo udeleženci raziskave glede umetne inteligence mešane občutke. Anketiranci so se večinoma strinjali, da so orodja, ki jih zagotavlja UI, učinkovita, in da njihova uporaba pomaga pri upravljanju človeških virov. Glavna omejitev raziskave je, da je omejena le na eno državo, saj je bilo zaradi pandemije COVID-19 težko najti in vključiti anketirance v raziskavo.
Prenosi
Literatura
Allen, D. G., Mahto, R., & Otondo, R. F. (2007). Web-based recruitment: Effects of infor- mation, organizational brand, and Allen, D. G., Mahto, R., & Otondo, R. F. (2007). Web-based recruitment: Effects of infor- mation, organizational brand, and attitudes toward a Web site on applicant attracttion. Journal of Applied Psychology, 92(3), 1696–1708. DOI: http://dx.doi.org/10.1037/0021-9010.92.6.1696.
Bhadoriya, M. C., Bajpai, N. & Patwardhan, M. (2017). Identifying and Prioritizing the Determinants of e-HRM: an AHP Approach. Annual International Conference on Enterprise Marketing & Globalization, 1(3), 74-83. DOI: https://doi.org/10.5176/2251-2349_HRMPD17.21
Blinnikova, A. V., & Ying, D. K. (2020). Using artificial intelligence in human resources management processes. Vestnik Universiteta, 3(7), 14-21. DOI: https://doi.org/10.26425/1816-4277-2020-7-14-21
Bruun, E. P. G, & Duka, A. (2018). Artificial Intelligence, Jobs and the Future of Work: Racing with the Machines. Basic Income Studies, 13(2), 1-15. DOI: http://dx.doi.org/10.1515/bis-2018-0018
Bouchard, M., & Wassell, S. (2020). Rebooting strategic human resource management: integrating technology to drive talent management. International Journal of Human Resources Development and Management, 20(2), 93-113. DOI: https://doi.org/10.1504/IJHRDM.2020.10027549
Brynjolfsson, E., & Mitchell, T. (2017). What Can Machine Learning Do? Workforce Implications. Science, 358(6370), 1530– 1534. DOI: http://dx.doi.org/10.1126/science.aap8062
Chelliah, J. (2017). Will artificial intelligence usurp white collar jobs?’ Human Resource Management International. Digest, 25(3), 1-3. DOI: http://dx.doi.org/10.1108/hrmid-11-2016-0152
Das, P., Pandey, M., & Rautaray, S. S. (2018). A CV Parser Model using Entity Extraction Process and Big Data Tools. International Journal of Information Technology and Computer Science, 9(2), 21-31. DOI: http://dx.doi.org/10.5815/ijitcs.2018.09.03
Dennis, M. J. (2018). Artificial intelligence and recruitment, admission, progression, and retention’. Enrollment Management Report, 22(9), 1-3. DOI: https://doi.org/10.1002/emt.30479
Elia, G., & Margherita, A. (2015). Next-generation human resource management: a system for measuring and visualising professional competencies. International Journal of Human Resources Development and Management, 15(1), 1-15. DOI: https://doi.org/10.1504/IJHRDM.2015.069975
Florentine, S. (2016). How artificial intelligence can eliminate bias in hiring: AI and machine learning can help identify diverse candidates,improve the hiring pipeline and eliminate unconscious bias. Retrieved from https://www.cio.com/article/3152798/artificialintelligence/how-artificial-intelligence-can-eliminate-bias-in-hiring.html
Ford, M. (2016). Rise of the Robots: Technology and the Threat of a Jobless Future. Basic Books Publisher, USA
Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerization? Technological Forecasting and Social Change, 114, 254-280. DOI: https://doi.org/10.1016/j.techfore.2016.08.019
Grillo, M. (2015). What types of predictive analytics are being used in talent management organizations? Cornell University, ILR School.
Hintze, A. (2016). Understanding the four types of AI, from reactive robots to self-aware beings. Retrieved from https://theconversation.com
Iqbal, F. M. (2018). Can Artificial Intelligence Change the Way in Which Companies Re-cruit, Train, Develop and Manage Human Resources in Workplace. Asian Journal of Social Sciences and Management Studies, 5(3), 102-104. DOI: http://dx.doi.org/10.20448/journal.500.2018.53.102.104
Iqbal, F.M., Ahmad, M., Allen, M., & Raziq, M. M. (2018). Does e-HRM improve labour productivity? A study of commercial bank workplaces in Pakistan. Employee Relations, 40(2), 281-297. DOI: http://dx.doi.org/10.1108/er-01-2017-0018
Kazuo, Y. (2017). How Artificial Intelligence Will Change HR. People & Strategy, 40(3), 42-46.
Lesgold, A.S., Bunzo, M. L., & Eggan, G. (1988). SHERLOCK: A Coached Practice Environment for an Electronics Troubleshooting Job. Pittsburgh University, Learning Research and Development Center.
Marler, J. H., & Parry, E. (2016). Human resource management, strategic involvement and e-HRM technology. International Journal of Human Resource Management, 27(19). 2233-2253. DOI: http://dx.doi.org/10.1080/09585192.2015.1091980
Marler, J. H., Liang, X. & Dulebohn, J. H. (2006). Training and effective employee information technology use. Journal of Management, 32(4), 721-743. DOI: https://doi.org/10.1177/0149206306292388
McCarthy, J. (2007). What Is Artificial Intelligence? Retrieved from http://jmc.stanford.edu/articles/whatisai/whatisai.pdf
McNulty, J. (2018). High-tech workplace tools are key to winning the war for talent. Strategic HR Review, 17(4), 176–180. DOI: https://doi.org/10.1108/SHR-05-2018-0033
Mokyr, J., Vickers, C., & Ziebarth, L. N. (2015). The History of Technological Anxiety and the Future of Economic Growth: Is ThisTime Different? Journal of Economic Perspectives, 29(3), 31-50. DOI: https://doi.org/10.1257/jep.29.3.31
Prensky,M.(2001).Digitalnatives,digitalimmigrants.OntheHorizon,9(5),1-6.DOI:https://doi.org/10.1108/10748120110424816
Rahmanifard, H., & Plaksina, T. (2018). Application of artificial intelligence techniques in the petroleum industry: a review. Artificial Intelligence Review, 52(4), 2295-2318. DOI: https://doi.org/10.1007/s10462-018-9612-8
Rich, E. (1983). Users are individuals: individualizing user models. International journal of man-machine studies, 18(3), 200-210. DOI: https://doi.org/10.1016/S0020-7373(83)80007-8
Sexton, R., McMurtrey, S., Michalopoulos, J., & Smith, A. (2005). Employee Turnover: A Neural Network Solution. Computers and Operations Research, 32(10), 2635-2651. DOI: https://doi.org/10.1016/j.cor.2004.06.022
Sheila, L.M., Steven, G., Chad, M., & Mayank, G. (2018). The new age: artificial intelligence for human resource opportunities and functions. Ernst & Young LLP. 1-8.
Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial Intelligence in Human Resources Management: Challenges and aPath Forward. California Management Review, 61(4), 15-42. DOI:https://doi.org/10.1177/0008125619867910
Theodoridis, S. (2015). Machine learning: A Bayesian and optimization perspective. Academic Press Elsevier.
Tubaro, P., & Casilli, A. A. (2019). Micro-work, artificial intelligence and the automotive industry. Journal of Industrial and Business Economics, 46(3), 333-345. DOI: https://doi.org/10.1007/s40812-019-00121-1
Turing, A. (1950). Computing machinery and intelligence in Parsing the Turing Test. Dordrecht: Springer.
Ved, S., Kaundanya, N.S., & Panda, O.P. (2016). Applications and Current Achievements in the field of Artificial Intelligence.Imperial Journal of Interdisciplinary research, 2(11), 932-936.
Wei, L.Q. (2013). The Impact of Human Resource Management Practices in the Entrepreneurial Process: Evidence from China.Journal of General Management, 38(3), 73–89. DOI: https://doi.org/10.1177/030630701303800305
Wellers, D., Elliott, T., & Noga, M. (2017). 8 ways machine learning is improving companies’ work processes. Harvard Business Review. Retrieved from https://hbr.org/2017/05/8-ways-machine-learning-is-improving-compnies-work-processes.
Wilkinson, A., Redman, T., & Dundon, T. (2017). Contemporary Human Resource Management, text and cases. 5th ed. London: Pearson. Zang, S., & Ye, M. (2015). Human resource management in the era of big data. Management and Sustainability Studies, 3(2), 41-45. DOI: https://doi.org/10.4236/jhrss.2015.31006
Zielinski, D. (2017). Get Intelligent on AI: Artificial intelligence can boost HR analytics, but know what you're buying. HR Magazine, 62(9), 60-63.