Landsat 8-based land surface temperature downscaling: the urban heat island perspective

Keywords: remote sensing, mobile measurements, NDVI, satellite imagery, thermal band

Abstract

More than half of today’s global human population lives in urban areas. As a result, built-up areas are expanding and thus creating the urban heat island (UHI) effect. This effect is known as one of the most widely recognized local meteoroidal phenomenon caused by anthropogenic activity. Owing to global climate change, the UHI phenomenon is intensifying, which poses even bigger threat to vulnerable social groups of citizens. It is also affecting the urban economy, especially energy consumption. For successful planning of mitigation and adaptation measures, urban design and sustainable development, analytical studies of the UHI phenomenon, using a combination of in-situ measurement data and remote sensing data, are crucial. When using the latter, we are often limited by the spatial resolution of the corresponding thermal bands.

Downloads

Download data is not yet available.

Author Biographies

Veno Jaša Grujić, University of Maribor, Faculty of Natural Sciences and Mathematics, Department of Biology

E-mail: veno.grujic@um.si

Mitja Kaligarič, University of Maribor, Faculty of Natural Sciences and Mathematics, Department of Biology

E-mail: mitja.kaligaric@um.si

Sonja Škornik, University of Maribor, Faculty of Natural Sciences and Mathematics, Department of Biology

E-mail: sonja.skornik@um.si

Nataša Pipenbaher, University of Maribor, Faculty of Natural Sciences and Mathematics, Department of Biology

E-mail: natasa.pipenbaher@um.si

Igor Žiberna, University of Maribor, Faculty of Arts, Department of Geography; Maribor, Slovenia.

E-mail: igor.ziberna@um.si

Lučka Kajfež Bogataj, University of Ljubljana, Biotechnical Faculty, Department of Agronomy.

E-mail: lucka.kajfez.bogataj@bf.uni-lj.si

Zalika Črepinšek, University of Ljubljana, Biotechnical Faculty, Department of Agronomy.

E-mail: zalika.crepinsek@bf.uni-lj.si

David Pintarič

E-mail: david.pintaric@gmail.com

Danijel Ivajnšič, University of Maribor, Faculty of Arts, Department of Geography; Maribor, Slovenia.

E-mail: dani.ivajnsic@um.si

Daša Donša, University of Maribor, Faculty of Natural Sciences and Mathematics, Department of Biology

E-mail: dasa.donsa1@um.si

References

Chen, X.-L., Zhao, H.-M., Li, P.-X., Yin, Z.-Y. 2006: Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 133-146. https://doi.org/10.1016/j.rse.2005.11.016

Cho, K., Kim, Y., Kim, Y. 2018: Disaggregation of Landsat-8 Thermal Data Using Guided SWIR Imagery on the Scene of a Wildfire. Remote Sensing 10(1), 105. https://doi.org/10.3390/rs10010105

Eastman, J. 2016: TerrSet. Clark Labs-Clark University.

ESA 2020: Copernicus Sentinel data.

ESRI 2020: ArcGIS Desktop, verzija 10.8. Redlands, Kalifornija: Environmental Systems Research Institute.

Gorgani, S. A., Panahi, M., Rezaie, F. 2013: The Relationship between NDVI and LST in the urban area of Mashhad, Iran. International Conference on Civil Engineering Architecture & Urban Sustainable Development , (str. 1-7). Tabriz , Iran.

Kaplan, G., Avdan, U., Avdan, Z. Y. 2018: Urban Heat Island Analysis Using the Landsat 8 Satellite Data: A Case Study in Skopje, Macedonia. Proceedings, 1-5.

Kustas, W. P., Norman, J. M., Anderson, M. C., French, A. N. 2003: Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sensing of Environment, 429-440. http://dx.doi.org/10.1016/S0034-4257(03)00036-1

Kyalo, D. K. 2017: Sentinel-2 and MODIS land surface temerature based evapotranspiration for irrigation efficiency calculations. Zaključno delo. Enschede, Nizozemska: Fakulteta za geoinformatiko, znanost in opazovanje zemlje.

Manoli, G., Fatichi, S., Schläpfer, M., Kailiang, Y., Crowther, T. W., Meili, N., BouZeid, E. 2019: Magnitude of urban heat islands largely explained by climate and population. Nature, 55-62. https://doi.org/10.1038/s41586-019-1512-9

Medmrežje 1. USGS. Pridobljeno iz EarthExplorer: https://earthexplorer.usgs.gov/; (9. 12 2020).

Medmrežje 2. ESA. Pridobljeno iz Copernicus Open Access Hub: https://scihub.copernicus.eu/dhus/#/home; (9. 12 2020).

Miles, V., Esau, I. 2020: Surface urban heat islands in 57 cities across different climate in northern Fennoscandia. Urban Climate, 1-11. https://ui.adsabs.harvard.edu/link_gateway/2020UrbCl..3100575M/doi:10.1016/j.uclim.2019.100575

Mirza, M. Q. 2003: Climate change and extreme weather events: can developing countries adapt? Climate Policy, 233–248. http://dx.doi.org/10.3763/cpol.2003.0330

Oke, T. R. 1973: City size and the urban heat island. Atmospheric Environment, 769-779. https://doi.org/10.1016/0004-6981(73)90140-6

Rizwan, A. M., Dennis, L. Y., Liu, C. 2008: A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 120-128. https://doi.org/10.1016/s1001-0742(08)60019-4

Schwarz, N., Schlink, U., Franck, U., Großmann, K. 2012: Relationship of land surface and air temperatures and its implications for quantifying urban heat island indicators—An application for the city of Leipzig (Germany). Ecological Indicators, 693-704. https://doi.org/10.1016/j.ecolind.2012.01.001

Sobrino, J. A., Irakulis, I. 2020: A Methodology for Comparing the Surface Urban Heat Island in Selected Urban Agglomerations Around the World from Sentinel-3 SLSTR Data. Remote Sensing, 1-29. https://doi.org/10.3390/rs12122052

Stewart, I. D., Oke, T. R. 2012: Local Climate Zones for Urban Temperature Studies. Bulletin of the American Meteorological Society, 1879-1900. https://doi.org/10.1175/BAMS-D-11-00019.1

Sundara Kumar, K., Udaya Bhaskar, P., Padmakumari, K. 2012: Estimation of land surface temperature to study urban heat island effect using Landsat ETM+ image. International Journal of Engineering Science and Technology, 771-778.

Tam, B. Y., Gough, W. A., Mohsin, T. 2015: The impact of urbanization and the urban heat island effect on day to day temperature variation. Urban Climate, 1-15. http://dx.doi.org/10.1016/j.uclim.2014.12.004

Wang, W., Liu, K., Tang, R., & Wang, S. 2019: Remote sensing image-based analysis of the urban heat island effect in Shenzhen, China. Physics and Chemistry of the Earth, 168-175. https://doi.org/10.1016/j.pce.2019.01.002

Xu, X., Cai, H., Qiao, Z., Wang, L., Jin, C., Ge, Y., Wu, F. 2017: Impacts of Park Landscape Structure on Thermal Environment Using QuickBird and Landsat Images. Chinese Geographical Science, 818-826. http://dx.doi.org/10.1007/s11769-017-0910-x

Yang, L., Qian, F., Song, D.-X., Zheng, K.-J. 2016: Research on Urban Heat-island Effect. Procedia Engineering, 11-18. http://dx.doi.org/10.1016/j.proeng.2016.10.002

Yuan, F., Bauer, M. E. 2006: Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 1-12. http://dx.doi.org/10.1016/j.rse.2006.09.003

Zawadzka, J., Corstanje, R., Harris, J., Truckell, I. 2019: Downscaling Landsat-8 land surface temperature maps in diverse urban landscapes using multivariate adaptive regression splines and very high resolution auxiliary data. International Journal of Digital Earth, 1-16. https://doi.org/10.1080/17538947.2019.1593527

Zhou, B., Rybski, D., Kropp, J. P. 2017: The role of city size and urban form in the surface urban heat island. Scientific reports, 1-9. https://doi.org/10.1038/s41598-017-04242-2

Published
2020-12-31
How to Cite
Grujić V. J., Kaligarič M., Škornik S., Pipenbaher N., Žiberna I., Kajfež Bogataj L., Črepinšek Z., Pintarič D., Ivajnšič D., & Donša D. (2020). Landsat 8-based land surface temperature downscaling: the urban heat island perspective. Journal for Geography, 15(2), 127-138. https://doi.org/10.18690/rg.15.2.3642
Section
Scientific Articles