Evaluating Relative Heat Stress in Natura 2000 Site Kras in Different Climate Change Scenarios - A Case Study Utilizing Multiscale Geographically Weighted Regression
Abstract
The study evaluates relative heat stress in the Natura 2000 site Kras under various climate change scenarios using Multiscale Geographically Weighted Regression (MGWR). Kras, a limestone plateau in southwestern Slovenia, is highly vulnerable to droughts and wildfires due to its high insolation. Optical and thermal satellite imagery and five future air temperature scenarios were utilized to downscale thermal conditions and evaluate relative heat stress in the study area. Results indicate significant spatio-temporal variability in LST, with the southeastern region being particularly susceptible to elevated heat stress. Projections show an overall increase in heat stress due to climate change, with potential reductions in densely vegetated areas. The study emphasizes the need for spatially explicit analyses and adaptive strategies to mitigate heat stress impacts on ecosystems and human populations.
Downloads
References
References
Adão, F., Fraga, H., Fonseca, A., Malheiro, A. C., & Santos, J. A. (2023). The Relationship between Land Surface Temperature and Air Temperature in the Douro Demarcated Region, Portugal. Remote Sensing, 15(22), Article 22. https://doi.org/10.3390/rs15225373
Ahmed, M. R., Ghaderpour, E., Gupta, A., Dewan, A., & Hassan, Q. K. (2023). Opportunities and Challenges of Spaceborne Sensors in Delineating Land Surface Temperature Trends: A Review. IEEE Sensors Journal, 23(7), 6460–6472. https://doi.org/10.1109/JSEN.2023.3246842
Almeida, C. R. de, Teodoro, A. C., & Gonçalves, A. (2021). Study of the Urban Heat Island (UHI) Using Remote Sensing Data/Techniques: A Systematic Review. Environments, 8(10), Article 10. https://doi.org/10.3390/environments8100105
ARSO. (2019). Climate change projections for Slovenia over the 21st century (p. 23). https://www.meteo.si/uploads/probase/www/climate/text/en/publications/OPS21_brosura_ENG.pdf
Awais, M., Li, W., Hussain, S., Cheema, M. J. M., Li, W., Song, R., & Liu, C. (2022). Comparative Evaluation of Land Surface Temperature Images from Unmanned Aerial Vehicle and Satellite Observation for Agricultural Areas Using In Situ Data. Agriculture, 12(2), Article 2. https://doi.org/10.3390/agriculture12020184
Bird, D. N., Banzhaf, E., Knopp, J., Wu, W., & Jones, L. (2022). Combining Spatial and Temporal Data to Create a Fine-Resolution Daily Urban Air Temperature Product from Remote Sensing Land Surface Temperature (LST) Data. Atmosphere, 13(7), Article 7. https://doi.org/10.3390/atmos13071152
Bivand, R. (2022). R Packages for Analyzing Spatial Data: A Comparative Case Study with Areal Data. Geographical Analysis, 54(3), 488–518. https://doi.org/10.1111/gean.12319
Blum, M., Lensky, I. M., Rempoulakis, P., & Nestel, D. (2015). Modeling insect population fluctuations with satellite land surface temperature. Ecological Modelling, 311, 39–47. https://doi.org/10.1016/j.ecolmodel.2015.05.005
Byrne, M. P., & O’Gorman, P. A. (2018). Trends in continental temperature and humidity directly linked to ocean warming. Proceedings of the National Academy of Sciences of the United States of America, 115(19), 4863–4868. https://doi.org/10.1073/PNAS.1722312115
CHELSA. (2024). Chelsa Climate. https://chelsa-climate.org/downloads/
Comber, A., Brunsdon, C., Charlton, M., Dong, G., Harris, R., Lu, B., Lü, Y., Murakami, D., Nakaya, T., Wang, Y., & Harris, P. (2023). A Route Map for Successful Applications of Geographically Weighted Regression. Geographical Analysis, 55(1), 155–178. https://doi.org/10.1111/gean.12316
Congedo, L. (2021). Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software, 6(64), 3172. https://doi.org/10.21105/joss.03172
Davidovič, D., & Ivajnšič, D. (2020). Indeks vlažnosti tal Pomurja. Revija Za Geografijo, 15(1), 91–107.
Davidovič, D., Ivajnsič, D., & Čuš, J. (2022). Interakcija naravnih in družbenih razmer kot pospeševalec zaraščanja Krasa (pp. 101–120). https://doi.org/10.18690/um.fnm.8.2022.5
Dolgan-Petrič, M. (1989). Gozdni požari na kraškem gozdnogospodarskem območju Slovenije. Geografski Vestnik, 61, 71–82.
Donša, D., Grujić, V. J., Pipenbaher, N., & Ivajnšič, D. (2021). The Lyme Borreliosis Spatial Footprint in the 21st Century: A Key Study of Slovenia. International Journal of Environmental Research and Public Health, 18(22), Article 22. https://doi.org/10.3390/ijerph182212061
Ebi, K. L., Capon, A., Berry, P., Broderick, C., Dear, R. de, Havenith, G., Honda, Y., Kovats, R. S., Ma, W., Malik, A., Morris, N. B., Nybo, L., Seneviratne, S. I., Vanos, J., & Jay, O. (2021). Hot weather and heat extremes: Health risks. The Lancet, 398(10301), 698–708. https://doi.org/10.1016/S0140-6736(21)01208-3
ESA. (2024). Land Surface Temperature. https://climate.esa.int/en/projects/land-surface-temperature/
ESRI. (2024). Multiscale Geographically Weighted Regression (MGWR) (Spatial Statistics)—ArcGIS Pro | Documentation. https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/multiscale-geographically-weighted-regression.htm
Farr, D. (2022). Temperature trends in some major countries from the 1980s to 2019. Journal of Geographical Sciences, 32(1), 79–100. https://doi.org/10.1007/s11442-022-1937-1
Fotheringham, A. S., Oshan, T., & Li, Z. (2024). Multiscale geographically weighted regression: Theory and practice (First edition). CRC Press.
Fotheringham, A. S., Yang, W., & Kang, W. (2017). Multiscale Geographically Weighted Regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247–1265. https://doi.org/10.1080/24694452.2017.1352480
Gallo, K., Hale, R., Tarpley, D., & Yu, Y. (2011). Evaluation of the Relationship between Air and Land Surface Temperature under Clear- and Cloudy-Sky Conditions. Journal of Applied Meteorology and Climatology, 50(3), 767–775. https://doi.org/10.1175/2010JAMC2460.1
Garcia-Santos, V., Niclòs, R., & Valor, E. (2022). Evapotranspiration Retrieval Using S-SEBI Model with Landsat-8 Split-Window Land Surface Temperature Products over Two European Agricultural Crops. Remote Sensing, 14(11), Article 11. https://doi.org/10.3390/rs14112723
GCOS. (2024). Land Surface Temperature. https://gcos.wmo.int/en/essential-climate-variables/land-temperature
Gkolemi, M., Mitraka, Z., & Chrysoulakis, N. (2023). Local scale surface temperature estimation by downscaling satellite thermal infrared observations using neural networks. 2023 Joint Urban Remote Sensing Event (JURSE), 1–4. https://doi.org/10.1109/JURSE57346.2023.10144083
Hollmann, R., Merchant, C. J., Saunders, R., Downy, C., Buchwitz, M., Cazenave, A., Chuvieco, E., Defourny, P., Leeuw, G. de, Forsberg, R., Holzer-Popp, T., Paul, F., Sandven, S., Sathyendranath, S., Roozendael, M. van, & Wagner, W. (2013). The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables. Bulletin of the American Meteorological Society, 94(10), 1541–1552. https://doi.org/10.1175/BAMS-D-11-00254.1
Hulley, G. C., Ghent, D., Göttsche, F. M., Guillevic, P. C., Mildrexler, D. J., & Coll, C. (2019). Land Surface Temperature. In Taking the Temperature of the Earth (pp. 57–127). Elsevier. https://doi.org/10.1016/B978-0-12-814458-9.00003-4
IPCC. (2023). Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (1st ed.). Cambridge University Press. https://doi.org/10.1017/9781009325844
Ismaila, A.-R. B., Muhammed, I., & Adamu, B. (2022). Modelling land surface temperature in urban areas using spatial regression models. Urban Climate, 44, 101213. https://doi.org/10.1016/j.uclim.2022.101213
Ivajnšič, D., Kaligarič, M., & Žiberna, I. (2014). Geographically weighted regression of the urban heat island of a small city. Applied Geography, 53, 341–353. https://doi.org/10.1016/j.apgeog.2014.07.001
Ivajnšič, D., & Žiberna, I. (2019). The effect of weather patterns on winter small city urban heat islands. Meteorological Applications, 26(2), 195–203. https://doi.org/10.1002/met.1752
Kaligarič, M., & Ivajnšič, D. (2014). Vanishing landscape of the “classic” Karst: Changed landscape identity and projections for the future. Landscape and Urban Planning, 132, 148–158. https://doi.org/10.1016/j.landurbplan.2014.09.004
Kamal, H., Aljeri, M., Abdelhadi, A., Thomas, M., & Dashti, A. (2022). Environmental Assessment of Land Surface Temperature Using Remote Sensing Technology. Environmental Research, Engineering and Management, 78(3), Article 3. https://doi.org/10.5755/j01.erem.78.3.31568
Kenny, G. P., Yardley, J., Brown, C., Sigal, R. J., & Jay, O. (2010). Heat stress in older individuals and patients with common chronic diseases. CMAJ : Canadian Medical Association Journal, 182(10), 1053–1060. https://doi.org/10.1503/cmaj.081050
Kestens, Y., Brand, A., Fournier, M., Goudreau, S., Kosatsky, T., Maloley, M., & Smargiassi, A. (2011). Modelling the variation of land surface temperature as determinant of risk of heat-related health events. International Journal of Health Geographics, 10(1), 7. https://doi.org/10.1186/1476-072X-10-7
Khan, A., Chatterjee, S., & Weng, Y. (2021). 2—Characterizing thermal fields and evaluating UHI effects. In A. Khan, S. Chatterjee, & Y. Weng (Eds.), Urban Heat Island Modeling for Tropical Climates (pp. 37–67). Elsevier. https://doi.org/10.1016/B978-0-12-819669-4.00002-7
Kim, S. W., & Brown, R. D. (2021). Urban heat island (UHI) intensity and magnitude estimations: A systematic literature review. Science of The Total Environment, 779, 146389. https://doi.org/10.1016/j.scitotenv.2021.146389
Li, K., Guan, K., Jiang, C., Wang, S., Peng, B., & Cai, Y. (2021). Evaluation of Four New Land Surface Temperature (LST) Products in the U.S. Corn Belt: ECOSTRESS, GOES-R, Landsat, and Sentinel-3. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 9931–9945. https://doi.org/10.1109/JSTARS.2021.3114613
Li, Z.-L., & Duan, S.-B. (2018). Land Surface Temperature. In Comprehensive Remote Sensing (pp. 264–283). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10375-6
Li, Z.-L., Wu, H., Duan, S.-B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J., Sun, Y., Si, M., Liu, M., Li, J., Zhang, X., Shang, G., Tang, B.-H., Yan, G., & Zhou, C. (2023). Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications. Reviews of Geophysics, 61(1), e2022RG000777. https://doi.org/10.1029/2022RG000777
Liang, S. (2018). 5.01 - Volume 5 Overview: Recent progress in Remote Sensing of Earth’s Energy Budget. In S. Liang (Ed.), Comprehensive Remote Sensing (pp. 1–31). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10365-3
Liang, S., & Wang, J. (Eds.). (2020). Chapter 7—Land surface temperature and thermal infrared emissivity. In Advanced Remote Sensing (Second Edition) (pp. 251–295). Academic Press. https://doi.org/10.1016/B978-0-12-815826-5.00007-6
Liu, J., Hagan, D. F. T., & Liu, Y. (2021). Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis. Remote Sensing, 13(1), Article 1. https://doi.org/10.3390/rs13010044
Liu, Y., Wang, Y., Lin, Y., Ma, X., Guo, S., Ouyang, Q., & Sun, C. (2023). Habitat Quality Assessment and Driving Factors Analysis of Guangdong Province, China. Sustainability, 15(15), Article 15. https://doi.org/10.3390/su151511615
Maiti, A., Zhang, Q., Sannigrahi, S., Pramanik, S., Chakraborti, S., Cerda, A., & Pilla, F. (2021). Exploring spatiotemporal effects of the driving factors on COVID-19 incidences in the contiguous United States. Sustainable Cities and Society, 68, 102784. https://doi.org/10.1016/j.scs.2021.102784
NASA. (2023, December 31). [Text.Article]. Vegetation & Land Surface Temperature; NASA Earth Observatory. https://earthobservatory.nasa.gov/global-maps/MOD_NDVI_M/MOD_LSTD_M
NOAA. (2024). Annual 2023 Global Climate Report. https://www.ncei.noaa.gov/access/monitoring/monthly-report/global/202313
Oshan, T., Li, Z., Kang, W., Wolf, L., & Fotheringham, A. (2019). MGWR: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS International Journal of Geo-Information, 8(6), 269. https://doi.org/10.3390/ijgi8060269
Oshan, T. M., Smith, J. P., & Fotheringham, A. S. (2020). Targeting the spatial context of obesity determinants via multiscale geographically weighted regression. International Journal of Health Geographics, 19(1), 11. https://doi.org/10.1186/s12942-020-00204-6
Pablos, M., Martínez-Fernández, J., Piles, M., Sánchez, N., Vall-llossera, M., & Camps, A. (2016). Multi-Temporal Evaluation of Soil Moisture and Land Surface Temperature Dynamics Using in Situ and Satellite Observations. Remote Sensing, 8(7), Article 7. https://doi.org/10.3390/rs8070587
Pouyan, S., Rahmanian, S., Amindin, A., & Pourghasemi, H. R. (2022). Chapter 15—Spatial and seasonal modeling of the land surface temperature using random forest. In H. R. Pourghasemi (Ed.), Computers in Earth and Environmental Sciences (pp. 221–234). Elsevier. https://doi.org/10.1016/B978-0-323-89861-4.00035-X
QGIS. (2024, April 19). https://qgis.org/en/site/forusers/download.html
R. (2024). The R Project for Statistical Computing. https://www.r-project.org/
Reiners, P., Sobrino, J., & Kuenzer, C. (2023). Satellite-Derived Land Surface Temperature Dynamics in the Context of Global Change—A Review. Remote Sensing, 15(7), Article 7. https://doi.org/10.3390/rs15071857
Rocha, N. S. da, Käfer, P. S., Skokovic, D., Veeck, G., Diaz, L. R., Kaiser, E. A., Carvalho, C. M., Cruz, R. C., Sobrino, J. A., Roberti, D. R., & Rolim, S. B. A. (2020). The Influence of Land Surface Temperature in Evapotranspiration Estimated by the S-SEBI Model. Atmosphere, 11(10), Article 10. https://doi.org/10.3390/atmos11101059
RTVSLO. (2022, 6). Kras je najzahtevnejše področje za obnovo gozda. Sadi in seje se praktično v kamen. https://www.rtvslo.si/okolje/kras-je-najzahtevnejse-podrocje-za-obnovo-gozda-sadi-in-seje-se-prakticno-v-kamen/635476
Shiff, S., Helman, D., & Lensky, I. M. (2021). Worldwide continuous gap-filled MODIS land surface temperature dataset. Scientific Data, 8(1), 74. https://doi.org/10.1038/s41597-021-00861-7
STA. (2023). Mineva Leto Dni Od Požara Na Krasu. https://www.sta.si/v-srediscu/pozar-kras-obletnica
STAGE. (2024). https://gis.stat.si/
Sun, X., Tang, H., Yang, P., Hu, G., Liu, Z., & Wu, J. (2020). Spatiotemporal patterns and drivers of ecosystem service supply and demand across the conterminous United States: A multiscale analysis. Science of The Total Environment, 703, 135005. https://doi.org/10.1016/j.scitotenv.2019.135005
SURS. (2023, 5). https://www.stat.si/StatWeb/News/Index/11124
TerrSet. (2020). Geospatial Monitoring and Modeling Software. https://clarklabs.org/terrset/
Tomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. (2011). Remote sensing land surface temperature for meteorology and climatology: A review. Meteorological Applications, 18(3), 296–306. https://doi.org/10.1002/met.287
Ullah, W., Ahmad, K., Ullah, S., Tahir, A. A., Javed, M. F., Nazir, A., Abbasi, A. M., Aziz, M., & Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon, 9(2), e13322. https://doi.org/10.1016/j.heliyon.2023.e13322
UNICEF. (2023). Protecting Children from Heat Stress: A technical note (p. 54). https://www.unicef.org/media/139926/file/Protecting-children-from-heat-stress-A-technical-note-2023.pdf
Ünsal, Ö., Lotfata, A., & Avcı, S. (2023). Exploring the Relationships between Land Surface Temperature and Its Influencing Determinants Using Local Spatial Modeling. Sustainability, 15(15), Article 15. https://doi.org/10.3390/su151511594
USGS. (2024). EarthExplorer. https://earthexplorer.usgs.gov/
Vargas Zeppetello, L. R., Raftery, A. E., & Battisti, D. S. (2022). Probabilistic projections of increased heat stress driven by climate change. Communications Earth & Environment, 3(1), Article 1. https://doi.org/10.1038/s43247-022-00524-4
Veble, D., & Brečko Grubar, V. (2016). Pogostost in obseg požarov v naravi na Krasu in v slovenski Istri. Geografski Vestnik, 88(1), 9–20.
WMO. (2023, June 20). Climate Change Impacts Scar Europe, but Increase in Renewables Signals Hope for Future. https://wmo.int/news/media-centre/climate-change-impacts-scar-europe-increase-renewables-signals-hope-future
Zakšek, K., Marsetič, A., & Kokalj, Ž. (2007). Izkoriščanje sončne energije na Krasu. Geodetski Vestnik, 51(1), 35–47.
Zhang, Z., Li, J., Fung, T., Yu, H., Mei, C., Leung, Y., & Zhou, Y. (2021). Multiscale geographically and temporally weighted regression with a unilateral temporal weighting scheme and its application in the analysis of spatiotemporal characteristics of house prices in Beijing. International Journal of Geographical Information Science. https://www.tandfonline.com/doi/abs/10.1080/13658816.2021.1912348
Zhou, J., Teuling, A. J., Seneviratne, S., & Hirsch, A. (2022). Increasing population exposure to future heatwaves influenced by land-atmosphere interactions. https://doi.org/10.21203/rs.3.rs-1990379/v1
Žiberna, I., Pipenbaher, N., Donša, D., Škornik, S., Kaligarič, M., Bogataj, L. K., Črepinšek, Z., Grujić, V. J., & Ivajnšič, D. (2021). The Impact of Climate Change on Urban Thermal Environment Dynamics. Atmosphere, 12(9), Article 9. https://doi.org/10.3390/atmos12091159
Copyright (c) 2024 Danijel Davidovič, Danijel Ivajnšič
This work is licensed under a Creative Commons Attribution 4.0 International License.