Soil moisture index in Pomurje: an example of Landsat 8 satellite data use
Abstract
This research demonstrates the methodological implementation of satellite imagery for evaluation of soil moisture in the case of Pomurje (Slovenia). The presented soil moisture index is a derivative of surface temperature and NDVI vegetation index, using spectral bands detected by optical and thermal sensor of the Landsat 8 satellite. The obtained values of the soil moisture index vary between 0 (low soil moisture) and 1 (high soil moisture). Furthermore, we observe the differences in soil moisture with regard to intensive or extensive agricultural land use. The calculated estimates of soil moisture in Pomurje reached values between 0.06–0.99, with statistically significant differences between higher values in forests and lower values in fields and other selected landuse categories. This approach to soil moisture assessment is useful for monitoring and planning agricultural and environmental activities at the landscape level and for evaluating the climate change impact on the humidity conditions in a given area.
Downloads
References
Alizadehtazi, B., Gurian, P. L., Montalto, F. A., 2020: Observed Variability in Soil Moisture in Engineered Urban Green Infrastructure Systems and Linkages to Ecosystem Services. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2020.125381S0022169420308416
Amani, M., Parsian, S., MirMazloumi, S. M., Aieneh O., 2016: Two new soil moisture indices based on the NIR-red triangle space ofLandsat-8 data. International Journal of Applied Earth Observation and Geoinformation 50. https://doi.org/10.1016/j.jag.2016.03.018
Ångström, A., 1925: The Albedo of Various Surfaces of Ground. Geografiska Annaler 7:4. https://doi.org/10.1080/20014422.1925.11881121
ARSO 2019: Podnebni diagrami, Murska Sobota. http://meteo.arso.gov.si/met/sl/climate/diagrams/murska-sobota/
Bao, Y., Lina, L., Wua, S., Deng, K. A. K., Petropoulos, G. P., 2018: Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. International Journal of Applied Earth Observation and Geoinformation 72. https://ui.adsabs.harvard.edu/link_gateway/2018IJAEO..72...76B/doi:10.1016/j.jag.2018.05.026
CORINE 2018: CORINE Land Cover. https://land.copernicus.eu/paneuropean/corine-land-cover
Courtney, F. M., Trudgill, S. T., 1988: The Soil: An introduction to soil study.
DHHMZ 1998: Površinski vodotoki in vodna bilanca Slovenije.
ERS 2020: Posebno poročilo: Uporaba novih tehnologij zajemanja posnetkov za spremljanje skupne kmetijske politike: na splošno stalen napredek, vendar počasnejši pri spremljanju podnebja in okolja. https://op.europa.eu/webpub/eca/special-reports/new-tech-in-agri-monitoring--2020/sl/ESA 2020: What is SMOS? https://earth.esa.int/web/guest/missions/esa- operational-eo-missions/smos
Fox, G. A., Sabbagh, G. J., Searcy, S. W., Yang, C., 2004: An Automated Soil Line Identification Routine for Remotely Sensed Images. Soil Science Society of America Journal 68. https://doi.org/10.2136/sssaj2004.1326
Ghazali, M. F.,Wikantika, K., Harto, A. B., Kondoh, A,. 2019: Generating soil salinity, soil moisture, soil pH from satellite imagery and its analysis. Information Processing in Agriculture. https://doi.org/10.1016/j.inpa.2019.08.003
GURS 2006: Digitalni model višin 25. https://www.e-prostor.gov.si/zbirke- prostorskih-podatkov/topografski-in-kartografski-podatki/digitalni-model- visin/digitalni-model-visin-z-locljivostjo-dmv-125-dmv-25-dmv-100/#tab1-1046
Hassan, A. M., Belal, A. A., Hassan, M. A., Farag, F. M., Mohamed, E. S., 2019: Potential of thermal remote sensing techniques in monitoring waterlogged area based on surface soil moisture retrieval. Journal of African Earth Sciences 155. https://doi.org/10.1016/j.jafrearsci.2019.04.005
Koltai, T., 2017: Naravnogeografski potenciali za kmetijstvo v Pomurski statistični regiji in spremembe rabe tal v obdobju 2000–2017. Revija za geografijo 12-1.
Kovačič, E., 1966: Hin sodotehnične melioracije del 2: Tla in voda.
MKGP 2007: Pedologija Grafični in pisni podatki Pedološke karte in pedoloških profilov. https://rkg.gov.si/vstop/
MKGP 2018: RABA Grafični podatki za celo Slovenijo. https://rkg.gov.si/vstop/
Mohseni, F., Mokhtarzade, M., 2020: A new soil moisture index driven from an adapted long-term temperature-vegetation scatter plot using MODIS data. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2019.124420
Moran, M. S., Clarke, T. R., Inoue, Y., Vidal, A., 1994: Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment 49, 3. https://doi.org/10.1016/0034-4257(94)90020-5
Repe, B., 2007: Voda v prsti in ugotavljanje njenega razporejanja v odvisnosti od reliefa. Dela 28. https://doi.org/10.4312/dela.28.91-106
Saha, A., Patil, M., Goyal, V. C., Rathore, D. S., 2018: Assessment and Impact of Soil Moisture Index in Agricultural Drought Estimation Using Remote Sensing and GIS Techniques. https://doi.org/10.3390/ECWS-3-05802
Spennemann, P. C.,Fernández-Long, M. E., Gattinoni, N. N., Cammalleri, C., Naumann, G., 2020: Soil moisture evaluation over the Argentine Pampas using models, satellite estimations and in-situ measurements. Journal of Hydrology: Regional Studies 31. https://doi.org/10.1016/j.ejrh.2020.100723
URS 2018: Pomurska regija. https://www.stat.si/obcine/sl/Region/Index/1http://www.arso.gov.si/vode/publikacije%20in%20poro%C4%8Dila/bilanca6190_2_BESEDILO.pdf
USGS 2020: EarthExplorer. https://earthexplorer.usgs.gov/
Vani, V., Pavan Kumar, K., Ravibabu, M. V., 2019: Temperature and Vegetation Indices Based Surface Soil Moisture Estimation: A Remote Sensing Data Approach. Rao, P. J. in sod. (ur.), Proceedings of International Conference on Remote Sensing for Disaster Management. https://dx.doi.org/10.1007/978-3-319-77276-9_25
Vovk Korže, A., 2015: Ekosistemski pristop za razumevanje prsti v geografiji. Revija za geografijo 10-1.
Zeng, Y., Feng, Z., Xiang, N., 2004: Assessment of soil moisture using Landsat ETM+ temperature/vegetation index in semiarid environment. https://doi.org/10.1109/IGARSS.2004.1370089
Zhan, Z., Qin, Q., Ghulan, A., Wang, D., 2007: NIR-red spectral space based new method for soil moisture monitoring. Science in China Series D: Earth Sciences volume 50. https://doi.org/10.1007/s11430-007-2004-6
Zhang, J., Yang, J., Lu, H., Wu, W., Huang, J., Chang, S., 2015: Subwavelength TE/TM grating coupler based on silicon-on-insulator. Infrared Physics & Technology 71. https://doi.org/10.1016/j.infrared.2015.06.018
Copyright (c) 2020 Danijel Davidovič, Danijel Ivajnšič
This work is licensed under a Creative Commons Attribution 4.0 International License.