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1 Introduction

Access to health care is a hot topic in the United States (Chen, 2025; Cuadros et al.,
2023; Dobkin et al., 2018; Flores Morales, 2024), which has a mixed health care
system (Curto et al., 2019; Oberlander, 2002). A mixed health cate system is a health
care system in which health care is provided by both private and public health care
providers. Americans generally believe that private health care providers provide
better health care than public health care providers, which means that access to
better health care depends on income and wealth (Berwick et al., 2025; Hoffman &
Paradise, 2008; Flores Morales, 2024; see also Schwandt, 2018). In recent years,
especially after the Covid-19 outbreak, health economists have become increasingly
interested in analysing the relationship between health care and the economy (see
Rasul, 2020). This paper analyses the time-varying relationship between health care
and economic activity in the United States, filling a gap in the literature.

Using time-varying Granger causality, the study provides empirical evidence for a
time-varying causal relationship between health care spending and industrial
production, which has important policy implications. Furthermore, it contributes to
the discussion on the impact of the COVID-19 epidemic on the economy and vice

versa.

The remainder of this paper is organised as follows. Section 2 reviews the literature
on the relationship between health care and the economy, Section 3 describes the
methods and data, Section 4 presents the results, Section 5 discusses the results, and

Section 6 concludes the paper.
2 Literature review

The outbreak and spread of the SARS-CoV-2 coronavirus, which causes COVID-
19, has shown how important good health care is for the normal functioning of the
economy (Fiori & Iacoviello, 2021; Sexton & Tito, 2021; Terry, 2020). The COVID-
19 epidemic and the measures taken to contain the spread of the SARS-CoV-2
coronavirus (e.g. lockdowns) led to disruptions in trade and production and caused
a shortage of goods, which had a negative impact on economic activity (Antioch,
2024; Caldara et al., 2025; Dunn, 2021; Ihrig et al., 2020). Although the COVID-19
recession lasted only two months, from March to April 2020, it had a negative impact
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on the health care sector (Rhyan et al., 2020). One reason for this was a decrease in
health care expenditure due to an increase in the unemployment rate (Rhyan et al.,
2020). Although this phenomenon was temporary, the same cannot be said of
inflation (Cuba-Borda et al., 2025; Lipinska et al., 2025), which peaked in 2022
(Faria-e-Castro, 2025). It not only had a negative impact on the health care sector
(higher prices, higher costs), but also on health (higher costs, higher stress levels)
(Fiedler, 2022; Movsisyan et al., 2024). In addition, the higher prices for health care
services led to an increase in inflation (Fiedler, 2022). Research by Hildebrandt and
Thomas (1991) shows that inflation can affect the prices of health care services and
vice versa (see also Glied, 2003). However, inflation does not affect all participants
in the health care market equally (Fiedler, 2022). According to Prager (2020), some
of them adapt by secking a cheaper health care provider in another US state or
abroad. High health care costs can also discourage people from seeing a doctor,

which in the worst case can even jeopardise their lives (Hamilton et al., 2018).

The problem is that there is little research that examines the relationship between
health care and economic activity before the outbreak of the SARS-CoV-2
coronavirus. This shows that the COVID-19 epidemic was a turning point (see
Mutray, 2020). This is because the COVID-19 crisis was not only a health crisis, but
also an economic crisis (Clarida et al., 2021; Knotek et al., 2020). According to von
der Schulenburg (2021), the COVID-19 epidemic has led health economists to
assess the direct and indirect costs and benefits of health policy measures (e.g.
vaccination measures). In the past, research on the relationship between health care
and economic activity has focused primarily on the impact of industrial production
on occupational health (for a literature review, see Belzer & Quinlan, 2024), which
is only a small part of the overall picture. This also applies to the impact of health
on workplace absenteeism (for a literature review, see Lee et al., 2023). Research by
Fisman et al (2024) shows that flu or flu-like illness can reduce working hours and
productivity. This was also the case during the COVID-19 epidemic (Bloom et al.,
2025; see also Groenewold et al., 2020).

Research by Vysochyna et al. (2023) shows that the outbreak and spread of the
SARS-CoV-2 coronavirus has also led to an increase in health care spending (both
in the private and public sectors), which has had a positive impact on economic
growth and health outcomes. Although the results were not immediately visible, they
contributed to a faster economic recovery after the COVID-19 outbreak.
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During the COVID-19 epidemic, uncertainty has become the new normal. The
health crisis has increased health policy uncertainty, while the economic crisis has
increased economic policy uncertainty (Altig et al., 2020; Barrero & Bloom, 2020).
Both had a negative impact on the economy and put additional pressure on
economic agents. Similar to economic policy uncertainty (see Baker et al., 20106),
health policy uncertainty can affect the employment and investment decisions of

health care providers, which in turn can have a negative impact on economic activity.
3 Methods and data

The empirical study aims to analyse the time-varying causal relationships between
health care and economic activity in the United States. Health care is represented by
health-related absenteeism rate of employees (ABSrate;), personal health
expenditure (INHEXP;) and health policy uncertainty (HEPU,), while economic
activity is represented by industrial production activity (InlP;). The econometric
framework used is the vector autoregression model (VAR), which can also be used
to control for other variables that could influence the causal relationship between
the variables analysed. In particular, we resort to a macroeconomic VAR that
controls for the general price level (InCPI;) and monetary policy (MPrate;), which

can be written as follows:

HEPU, = a; + by HEPU,_; + by, HEPU,_, + by3InIP,_; +
bi4lIP;_y + bisHEXP;_1 + bigInHEXP;_, + by;InCPI;_{ +
bignCPI;_,+bigMPrate;_1+by1oMPrate;_, +
bi11ABSrate;_1+by1,ABSTate,_, + eq;

InlP; = ay, + byt HEPU;_1 + by, HEPU;_5 + by3InlPs_y + by lIP;_ +
bysHEXP;_y + bygINHEXP,_, + by, InCPI,_, +
bygInCPI;_5+bygMPrate,_q+by oMPrate;_, +
by11ABSrate,_1+by1,ABSrate;_, + ey

OF

HEXP, = az + b3y HEPU,_; + b3y HEPU,_5 + byslnlP,_; +
b3allPe_y + bysHEXP,_y + bygInHEXP,_, + by, InCPI,_; +
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b3gInCPI;_,+bsgMPrate;_1+bzoMPrate,_, +
b3, ABSrate,_1+bz 1, ABSrate;_, + e3;

InCPI; = ay + by HEPU;_ + by, HEPU;_» + bysInlP;_ +
bysllP_5 + bysHEXP, 1 + bygInHEXP;_» + a47InCPI_1 +
bugInCPI,_5+bygMPrate,_1+byoMPrate,_, +
by11ABSTrate,_1+by 1, ABSTate;_, + ey

MPrate; = as + bsyHEPU,_{ + bs; HEPU,;_, + bs3InIP,_4 +
bsylIP,_5 + bssHEXP, 1 + bsgInHEXP;_, + bs;InCPI;_ +
bsgInCPI;_,+bsgMPrate,_;+bsoMPrate;_, +
bs1ABSrate,_1+bs,ABSTate,_, + es;

ABSrate; = ag + bgtHEPU;_1 + bg; HEPU;_, + bg3IniP,_1 +
bgyllP,_5 + bgsHEXP, 1 + bggINHEXP;_» + bg7InCPI;_ +
begInCPIl,_,+bgoMPrate,_1+bgioMPrate,_, +
bg11ABSTrate,_1+bg,ABSTate;_, + eg;

where a,(n =1, ...,6) are estimated constants, by, (n =1,...,6;k = 1,...,mn)
are estimated parameters, and e, (n = 1, ...,6) is an error term. We use the above
specification to determine optimal value of m (which is 2 in the above specification)

by estimating the information criteria by standard Stata routines (see the results

below)!.

Typically, testing for Granger causality between two specific variables rests on joint
Wald test of the zero-value null hypothesis of specific paits of by, parameters, e.g.
testing whether HEPU, Granger causes HEXP; is a Wald test of the null hypothesis
b31 = bz, = 0. In this context it is also usually assumed that the variables in the
VAR model specification are stationary, unless lag-augmentation is used as suggested
by Toda and Yamamoto (1995) and Dolado and Liitkepohl (1996), which leads to a
lag-adjusted VAR (LA-VAR). This is achieved by adding d additional lags to the m

lags in equation (1) above, where d is the largest order of integration of one of the

1 We also estimate an alternative model in which a time trend is added to model (1) as an exogenous

variable.
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variables of the VAR model and is determined by unit root tests (see e.g. Baum et
al., 2025; Shi et al., 2018; Shi et al., 2020). We apply the ADFmax test by Leybourne
(1995) and the DF-GLS test by Elliott, Rothenberg and Stock (1996) using the
adfmaxur-Stata code by Otero and Baum (2018) and the ersur code by Otero and
Baum (2017).

While the procedure described above is used to obtain a single, static estimate of a
Wald test statistic, Shi et al. (2018), Shi et al. (2020) and Baum et al. (2025) have
proposed a method for computing the time-varying Granger causality test statistic
based on three recursive (sequential) methods of test statistic estimation,
implemented in the tvge Stata code of Baum et al. (2022) and used in this study —
the forward expanding method (FE, in which the test statistic is computed from the
VAR model on subsamples expanding from the first observation through a certain
minimum specified window size to the maximum possible window size), the rolling
window method (RO, which involves an estimation of VARs on subsamples of a
given window size that rolls forward) and the recursive evolving method (RE, which
is similar to the FE method except that the starting point of the estimation can be
any time period t in the sample). All methods result in a time series of Wald statistics
or, alternatively, a single statistic for the test of the entire sample with the null
hypothesis that a given variable does not Granger cause another variable at any point
in time (Baum et al., 2022). For the time-varying Granger analysis, the minimum
window size is set to 72 months (as suggested by Baum et al., 2022, 2025) and the
critical significance levels for the test statistics are calculated using a bootstrap
technique (500 replications are used), as suggested by Shi et al. (2018) and Shi et al.
(2020), and it controls for size (i.e., the problem of multiplicity — see Shi et al. 2020)
by including 12 observations in the calculation, as suggested by Baum et al. (2022).
As suggested by Baum et al. (2022), we also include a time trend in the Granger
causality test, as some variables exhibit trend development. Heteroskedasticity
robust test statistics are used as recommended by Shi et al. (2018). Finally, the test

statistics and critical significance levels are presented graphically.

The variables in model (1) are monthly and cover the period 1990m1-2025m3.
Variables defined in percentages (MPrate;, and ABSrate;) and HEPU, enter the
model in levels while other variables in natural logarithms of levels. All variables
except HEPU, and MPrate, are seasonally adjusted. A detailed description and the
data sources can be found in Table 1, while descriptive statistics are in Table 2.
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Table 1: Time series description

Notation

Description and data source

HEPU,

Health Policy Uncertainty index, monthly frequency. Health care
categorical Economic Policy Uncertainty index for the US computed by
Baker et al.  (2016) is  used, accessed at  webpage

https:/ /www.policyuncertainty.com/ categorical_epu.html.

InlP,

Natural logarithm of industrial production (total) index, real (quantity)
values, monthly frequency, seasonally adjusted. Data source is Board of

Governors of the Federal Reserve System (2025a).

InHEXP,

Natural logarithm of personal health expenditures index, real (quantity)
values, monthly frequency, seasonally adjusted. Data source is U.S. Bureau
of Economic Analysis (2025).

InCPI,

Natural logarithm of consumer price index, monthly frequency, seasonally
adjusted. Data source is U.S. Bureau of Labor Statistics (2025a).

MPrate,

Monetary policy rate in the US. For the period 1990m1-2022m2 this is the
shadow federal funds rate computed by Wu-Xia (2016), for the period
2022m3-2025m3 the federal funds effective rate is used. Data source for
the first is Federal Reserve Bank of Atlanta (2022) while for the second
Board of Governors of the Federal Reserve System (2025b)

ABSrate,

Rate of health-related absenteeism from work, monthly frequency,
seasonally adjusted. The variable is calculated as follows. First, we used data
from the Current Population Survey and summed two categories of
employed persons who did not work in the reference week of the study for
health reasons: i) those who did not work at all (data source: U.S. Bureau
of Labor Statistics, 2025b) and ii) those who worked only part of the time
(data source: U.S. Bureau of Labor Statistics, 2025¢). Second, the calculated
number of employees who were absent for health reasons was divided by
the number of employees who normally work full-time (U.S. Bureau of
Labor Statistics, 2025d) and multiplied by 100 to obtain the absence rate as
a percentage. Third, since the time series in the previous steps were not
seasonally adjusted, the time series obtained in the second step was
seasonally adjusted (the seasonal adjustment was performed for the entire
available time series, which ranges from 1976m6 to 2025m3) using the
JDemetra+ X-13 adjustment method and the X11 specification of the

Eviews software.
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Table 2: Descriptive statistics of model’s variables
Variable Number' of | Mean Star}dérd Minimum | Maximum
obsetvations | value deviation value value
HEPU, 423 146.9286 | 118.4311 15.28183 1030.681
InlpP, 423 4.490351 | 0.1598244 | 4.099288 4.645823
InHEXP, | 423 4.332502 | 0.2765698 | 3.881976 4.86534
InCPI, 423 5.308373 | 0.2398394 | 4.848116 5.767618
MPrate; | 423 2.468889 | 2.742331 -2.99 8.14
ABSrate; | 423 2.62157 0.4003649 | 1.656403 5.449699

Source: Own calculations.
4 Results

To determine the optimal lag structure of model (1), two unit root tests and lag
selection are performed. Following Baum et al. (2025), the ADFmax test by
Leybourne (1995) and the DF-GLS test by Elliott, Rothenberg, and Stock (1996)
were used, both based on a Dickey-Fuller type of test specification, which according
to the authors perform better than the adjusted DF test (Dickey and Fuller, 1979).
The results, presented in Tables 3 and 4, indicate that HEPUy, is a stationary time
seties, InlP; is trend stationary, while INnHEXP;, InCPI,, MPrate,, and ABSrate,
are I(1) time series (the results show that the time series only become stationary
when the time series are differenced). A mixture of I(0) and I(1) suggests that the
VAR specification for the Granger test (1) needs to be extended by an additional lag
of the explanatory variables (see Baum et al., 2025; Dolado & Liitkepohl, 1996; Toda
& Yamamoto, 1995).

Table 3: Results of ADFmax (Leybourne, 1995) unit root test

Variable Test results — model with a constant (in brackets with
constant plus trend)
Inf. Lags Test statistics p-value
criteria | included

HEPU, In level AIC 3 (0) —4.371 (—6.854) 0.000 (0.000)
SIC 0 (0) —6.251 (—6.854) 0.000 (0.000)
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IniP, Inlevel | AIC 202 0.867 (—1.082) 0.986 (0.861)
SIC 2(2) 0.867 (~1.082) 0.989 (0.861)

In first | AIC 1(1) —14.806 (—14.926) | 0.000 (0.000)

difference | SIC 1(1) —14.806 (—14.926) | 0.000 (0.000)

INHEXP, | Inlevel | AIC 702 0.473 (—4.182) 0.966 (0.004)
SIC 2(2) 0.026 (—4.182) 0.917 (0.002)

In first | AIC 6 (6) ~10.830 (~10.850) | 0.000 (0.000)

difference | SIC 1(1) —20.004 (~19.989) | 0.000 (0.000)

InCPI, | Inlevel | AIC 15 (15) | 0.245 (~2.145) 0.943 (0.370)
SIC 203) 0.478 (—1.291) 0.970 (0.787)

In first | AIC 14 (14) | —3.688 (-3.669) | 0.002 (0.017)

difference | SIC 1(1) ~12.030 (~12.015) | 0.000 (0.000)

MPrate, | Inlevel | AIC 6 (6) ~2333(=2.908) | 0.070 (0.103)
SIC 4(4) ~1.859 (—2.296) | 0.163 (0.274)

In first | AIC 5(5) —4.612 (—4.667) | 0.000 (0.001)

difference | SIC 303) —5.889 (=5.965) | 0.000 (0.000)

ABSrate, | Inlevel | AIC 8 () ~1.708 (—2.483) | 0.225 (0.225)
SIC 4(4) —2.520 (-3.623) | 0.039 (0.013)

In first | AIC 7 () —11.355 (—11.342) | 0.000 (0.000)
difference | SIC 44 —15.238 (~15.218) | 0.000 (0.000)

Notes: The ADFmax test by Leybourne (1995) was performed using the adfmaxur Stata

codes by Otero and Baum (2018). For each variable included in the Granger model, the null

hypothesis of the unit root is tested against the alternative for the level and first difference

of a variable. The test is based on ADF-type regressions in which we have the number of

lags determined by Akaike (AIC) and Schwarz Information Criteria (SIC) (the maximum

number of lags in our case is 17 and is determined by the method of Schwert (1989). The

test regression is estimated once with a constant only and once with a constant plus trend

(results in brackets). The last two columns show the test statistics and the p-value of the
statistics. See Leybourne (1995) and Baum and Otero (2018) for details on the test and the

software code features.

Source: Own calculations.
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Table 4: Results of DF-GLS (Elliot et al., 1996) unit root test

Variable Test results — model with a constant (in brackets with
constant plus trend)
Inf. Lags Test statistics p-value
critetia | included
In level AIC 3(3) —4.045 (—4.636) 0.000 (0.000)
HEPU, SIC 0 (0) —5.928 (-6.436) 0.000 (0.000)
In level AIC 11 (2) 0.568 (-0.789) 0.809 (0.799)
SIC 2(2) 1.025 (-0.789) 0.903 (0.783)
InlPy In first | AIC 11 (11) | -2.229 (-4.196) 0.007 (0.000)
difference | SIC 5(Q) -3.839 (-14.177) 0.000 (0.000)
In level AIC 74 4.116 (-3.297) 1.000 (0.002)
SIC 2(2) 2.905 (=3.796) 0.997 (0.000)
InHEXP,
In first | AIC 1(6) -19.398 (-10.615) | 0.355 (0.000)
difference | SIC 1) —-19.398 (-=19.947) | 0.000 (0.000)
In level AIC 15 (15) | 2.262 (-1.795) 0.987 (0.240)
SIC 32 5.348 (-1.150) 1.000 (0.582)
InCPI In first | AIC 14 (14) | -2.219 (-3.030) 0.007 (0.0006)
difference | SIC 22 —6.997 (-8.339) 0.000 (0.000)
In level AIC 6 (0) —-1.183 (-2.458) 0.158 (0.045)
SIC 44 —-0.991 (-1.924) 0.237 (0.141)
MPrate,
In first | AIC 5(5) —3.569 (—4.478) 0.000 (0.000)
difference | SIC 3(3) —4.666 (=5.764) 0.000 (0.000)
In level AIC 8 (8) —-0.679 (-2.456) 0.374 (0.0406)
SIC 54) —0.985 (-3.424) 0.240 (0.001)
ABSrate,
In first | AIC 14 (14) | -0.075 (=2.980) 0.614 (0.007)
difference | SIC 14 (14) | -0.075 (=2.980) 0.624 (0.009)

Notes: The DF-GLS test by Elliot et al. (1996) was performed with the Stata code ersur
(Otero and Baum, 2017). The test procedure was the same as for the ADFmax test: The test

was performed for each variable at the level and in the first difference (which in the test result

in general least squares demeaned and detrended time series, respectively (see Elliot et al.,

1996; Otero & Baum, 2017). The test regressions with a constant and a constant plus trend

(results in parentheses) were estimated and the number of lags in the test regressions was

determined using the AIC and SIC information criteria. The last two columns show the test

statistics and the p-value of the statistics.
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Source: Own calculations.

The results of the lag order selection of the VAR model (1) are shown in the
Appendix. As in Shi et al. (2020) and Baum et al. (2025), this optimal lag order is
then used in all subsamples. Shi et al. (2020) apply Bayesian information criteria,
Baum et al. (2025) opt for a parsimonious lag structure (m=2, i.e. the first two lags).
In our case, AIC and FPE specify m=5, while HQIC and SBIC specify m=2. We
follow the literature and choose m=2. This selection is also confirmed by a VAR
model (1) with an included trend. Given the results of DF-GLS ADFmax, the lag in
the VAR model (1) is adjusted, increased by 1, resulting in an LA-VAR model with
the first three lags.

Table 5 contains the results of the Granger causality for the entire sample. This uses
a Wald test to test whether a variable of interest does not Granger-cause (i.e. null
hypothesis is no Granger causality) another variable of interest at any point in time
in the sample (Baum et al., 2022), or more specifically, whether i) the economic

activity (industrial production) is not Granger caused by a health care feature, i.e. the
GC GC
job absenteeism rate (ABSrate; — InlPy), health expenditure InHEXP, — InlP;)

GC
and health policy uncertainty (HEPU; — InlP;); ii) health outcomes (the

absenteeism rate) are not Granger caused by industrial production (InlP,
EgABSratet), health expenditures (INHEXP, G—C>ABSratet), and health policy
uncertainty (HEPU, C—;EABSratet); iii) the health expenditures is not Granger
caused by industrial production (InlP, G—C> InHEXP,), the absence rate (ABSrate;

GC GC
— INHEXP;), and the health policy uncertainty (HEPU, — InHEXP;); iv) the

health policy uncertainty in not Granger caused by industrial production (InlP,
GC GC
— HEPU,;), the job absentecism rate (ABSrate, — HEPU,;), and health

GC
expenditures (INHEXP, — HEPU;). The rejection of null hypothesis is an
indication of Granger causality at some time in the sample (Baum et al., 2022).
Following Baum et al. (2022) and Shi et al. (2018, 2020) the maximum Wald statistics

are compared to 95% and 99t bootstrapped values of statistics to draw conclusions



132

LEXONOMICA

about the causality. Wald statistics can differ in size which is due to the different

subsampling of the methods (Baum et al., 2025).

Table 5: The results of Granger causality test for the total sample

GC
InlP, = HEPU,

Max Wald | Max Wald RO Max Wald RE
FE
GC
ABSrate, - InIP, 20.843 9.947 22.556
(14.854; (14.676; 20.897) (15.579; 21.717)
20.102)
GC
InHEXP, <5 InlP, 119.377 238.462 379.277
(11.883; (11.625; 17.954) (12.660; 18.152)
18.043)
GC
HEPU, 55 InIP, 18.008 20.368 22.110
(10.888; (12.033; 17.367) (12.212; 17.643)
17.179)
GC
IniP, %5 ABSrate, 4.430 8.466 25.633
(13.253; (13.614; 23.761) (14.374; 24.477)
21.804)
GC
InHEXP, °5 ABSrate, 7.484 13.160 24.540
(11.944; (12.330; 19.124) (12.485; 19.991)
17.853)
GC
HEPU, 5 ABSrate, 3.361 14.963 17.109
(11.257, (12.052; 17.861) (12.721; 18.992)
17.477)
GC
InIP, =5 InHEXP, 16.513 17.265 20.202
(11.991; (12.772; 20.844) (13.171; 21.006)
20.319)
GC
ABSrate, - InHEXP, 4121 11.656 17.424
(10.122; (11.127; 17.562) (11.774; 19.838)
17.045)
GC
HEPU, =5 InHEXP, 14.108 17.731 17.731
(9.931; (11.184; 17.828) (12.249; 18.083)
16.992)
17.606 19.667 22.077
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(9.853; (10.800; 16.211) (11.473; 16.605)
16.432)
GC
ABSrate, - HEPU, 2.039 10.072 10.638
(11.582; (12.796; 18.237) (13.317; 19.375)
17.205)
GC
InHEXP, — HEPU, 60.329 46.701 72.447
(10.654; (11.878; 14.858) (12.387; 15.799)
14.711)

Notes: The maximum Wald test statistics for FE, RO and RE methods are reporter for the
null hypothesis of no Granger causality for model (1). The 95th (the first value) and 99th
percentiles (the second value) of the critical levels for the bootstrapped test statistics are
given in parentheses. The results are calculated using the tvge Stata code from Baum et al.

(2022).

Source: Own calculations.

Above all, the results show that reverse causality can be identified between the
variables of interest, regardless of the method used. For example, InHEXP, is
Granger causing [nlP;, and conversely, the latter is Granger causing the former
variable. For some pairs of variables, the results depend on the method chosen. For
example, ABSrate; is Granger causing [nIP, at 5 % significance level, except for
the RO method. The feedback causality, InIP; Granger causing ABSrate,, is
identified only with RO method. No feedback can be identified also between
ABSrate, and HEPU,: HEPU, is Granger causing ABSrate, but not vice versa.
The Granger causality relationship between the variables may be limited in time to
only some subperiods, which is analysed below by the time-varying Granger causality
tests. To save space, we only present the results for the RE method. According to
Baum et al. (2025), the RE and RO methods have greater explanatory power than
the FE method when analysing time-varying Granger causality, while Shi et al. (2018)
tind that the RE method performs best of the three methods.

Figure 1: Time-varying RE Wald test results
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Notes: Results of the time-varying Granger causality test based on model (1), with
90th and 95th percentiles of bootstrapped test statistics for the Wald test. The null
hypothesis is that the first variable in the title of a specific graph does not Granger
cause the second variable in the title of the graph. The test statistic exceeding the
critical values leads to rejection of the null and conclusion that the first variable
Granger causes the second variable. The Stata code tvge from Baum et al. (2022)
was used. The date on which the Wald test statistic exceeds the critical value is the
start date for the rejection of the null hypothesis (Baum et al., 2018).

The results show that, with the exception of the period 2004—2008, the hypothesis
of ABSrate; not Granger causing [nlP; can not be rejected at 5% significance level.
We can also observe that InHEXP, was Granger causing (nIP; from the second

quarter of 2020 on, while HEPU, was Granger causing (nlP; in the first part of the
observation period until around the end of 2004 and then in the last 3 quarters of
2020.
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ABSrate; was Granger caused by InIP; and InHEXP, in the pandemic petiod and
by HEPU; in 2007, occasionally in 2011-2012 and in the pandemic period.

InHEXP; was Granger caused by [nIP, in the second half of 1998, in the second
half of 2008, in the second quarter of 2010 and in 2020, by ABSrate, from the last
quarter of 2005 to the end of the first quarter of 2008 and in the second quarter of
2019, and by HEPU, in 2010 and in the second quatter of 2020.

HEPU, was Granger caused by InlP, in the period 2009-2010 and in 2020 and by
InHEXP; in the second quarter of 2010, 2020, 2022 and at the end of the observed
period.

The results show that health care and economic activity are interrelated but this is
time-dependent. In general, economic and health crises appear to increase this

interrelation.
5 Discussion

The use of time-varying Granger causality is a promising approach for analysing the
relationship between health care and the economy, as this study shows. The
estimates suggest that in certain time periods workplace absenteeism, health
expenditure, and health policy uncertainty Granger-cause industrial production. This
means that changes in the health care sector can have an impact on the economy.
This became clear at the beginning of the COVID-19 pandemic, when the number
of COVID-19 cases increased, as did health-related workplace absenteeism
(Groenewold et al., 2020), health expenditure (Vysochyna et al., 2023), and health
policy uncertainty (Bloom et al., 2025). Although the increase in health care spending
could not offset the negative impact of the COVID-19 epidemic on economic
activity, it helped to mitigate its negative impact on the economy (Vysochyna et al.,
2023).

6 Conclusion

The aim of this study was to analyse the relationship between health care and
economic activity in the United States using time-varying Granger causality. The
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main finding is that there is a time-varying causal relationship between health care
and economic activity, as observed during the COVID-19 epidemic. From a policy
perspective, this indicates that growth in healthcare spending affects industrial
production and vice versa. Policymakers should therefore promote growth in
healthcare consumption and industrial production. This can be achieved in various
ways, including fiscal measures. Growth in healthcare consumption can affect health
outcomes, while improved population health can lead to higher productivity.
Growth in healthcare expenditure can also be achieved through improved access to
doctors (prevention) and health insurance, as well as by raising public awareness of

the importance of health.
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Appendix
Table A.1: Lag selection results: a VAR model without trend

Time variable: time, 199eml to 2025m3

Delta: 1 month
. varsoc HEPU 1nIP InHEXP 1nCPI MPrate ABSrate, maxlag(12)
Lag-order selection criteria

Sample: 1991ml thru 2025m3 Number of obs = 411

Lag LL LR df  p FPE AIC HQIC SBIC

0 | -2160.79 001529  10.544 10.5672 10.6027
1 2081.7 8485 36 0.000 2.6e-12 -9.92555 -9.7631 -9.5149
2| 2294.95 426.5 36 0.000 8.3e-13 -10.7881 -10.4864* -10.0254*
3| 2340.58 91.258 36 0.000 7.%9e-13 -10.8349 -10.394 -9.72029
4 2382 82.85 36 0.000 7.7e-13 -10.8613 -10.2811 -9.3947
5 | 2426.48 88.954 36 0.000 7.4e-13* -10.9026* -10.1832 -9.08395
6 2448.6 44.228 36 0.163 8.6e-13  -10.835 -9.97634 -8.66439
7 | 2473.07 48.951 36 0.073 8.4e-13 -10.7789 -9.78161 -8.25631
8 2492.7 39.25 36 0.326 9.2e-13 -10.6992 -9.56209 -7.82463
9 | 2528.26 71.129 36 0.000 9.2e-13 -10.6971 -9.42072 -7.47052
10 | 2569.53 82.534 36 0.000 9.0e-13 -10.7228 -9.30711 -7.14416
11 | 2613.14 87.226 36 0.000 8.7e-13 -10.7598 -9.20491 -6.82921
12 | 2641.08 55.888* 36 0.018 9.1e-13 -10.7206 -9.02646 -6.43802

* optimal lag
Endogenous: HEPU 1nIP InHEXP 1nCPI MPrate ABSrate
Exogenous: _cons
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Source: Own calculations.

Table A.2: Lag selection results: a VAR model with a trend included

. varsoc HEPU 1nIP 1nHEXP 1nCPI MPrate ABSrate, exog(trend) maxlag(12)

Lag-order selection criteria

Sample: 1991ml thru 2025m3 Number of obs = 411

Lag LL LR df p FPE AIC HQIC SBIC
) -1154.03 .000012 5.67413 5.72054 5.79146
1 2086.77 6481.6 36 0.000 2.0e-12 -9.92104 -9.73538 -9.45172
2 2299.29 425.02 36 0.000 8.4e-13 -10.78 -10.4551* -9.95866*
3 2343.33 88.081 36 0.000 8.le-13 -10.8191 -10.355 -9.64579
4 2383.98 81.317 36 0.000 7.9e-13 -10.8418 -10.2384 -9.31647
5 2427.94 87.913 36 0.000 7.6e-13* -10.8805* -10.1379 -9.00319
6 2449.88 43.875 36 0.172 8.l1e-13 -10.8121 -9.93018 -8.58277
7 2474.39 49.017 36 ©0.073 8.6e-13 -10.7561 -9.73502 -8.17486
8 2494.13 39.489 36 0.317 9.4e-13 -10.677 -9.51667 -7.74376
9 2529.82 71.385 36 0.000 9.4e-13 -10.6755 -9.37593 -7.39027
10 2571.91 84.177 36 ©0.000 9.2e-13 -10.7052 -9.26631 -7.06791
11 2615.2 86.574 36 0.000 8.9e-13 -10.7406 -9.16253 -6.75137
12 2644.1 57.81* 36 0.012 9.2e-13 -10.7061 -8.98876 -6.36485

* optimal lag
Endogenous: HEPU 1nIP 1nHEXP 1nCPI MPrate ABSrate
Exogenous: trend _cons

Povzetek Clanka v slovenskem jeziku (abstract in Slovene language)

Epidemija covida-19 je spodbudila potrebo po analizi razmerja med zdravstveno
oskrbo in gospodarstvom. Ta ¢lanck analizira ¢asovno spremenljivo razmerje med
zdravstveno oskrbo in gospodarsko aktivnostjo v Zdruzenih drzavah Amerike ter
zapolnjuje vrzel v obstojeci literaturi. Z uporabo ¢asovno spremenljive Grangerjeve
vzrocnosti raziskava ponuja empiriéne dokaze o ¢asovno spremenljivem vzro¢nem
razmerju med izdatki za zdravstvo in industrijsko proizvodnjo, kar ima pomembne
posledice za oblikovanje politik.



