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Abstract This paper presents a comprehensive pedagogical
treatment of Clarke and Park transformations through
systematic vector trepresentation, designed specifically for
educational purposes in power electronics and motor control
courses. While these fundamental transformations are
ubiquitous in modern applications—from field-oriented control
of AC machines to grid-connected converter control—
educational materials often present them either as matrix
operations without geometric foundation, or embedded within
machine-specific derivations that obscure the general
mathematical structure. We address this pedagogical need by
progressing systematically from three-phase voltage equations
in the time domain to a spatial vector representation in three-
dimensional space, deriving the Clarke transformation through
explicit geometric projection onto the plane where balanced
quantities reside, and, subsequently, deriving the Park
transformation as a time-varying rotation of the Clarke frame.
The work establishes an amplitude-invariant formulation,
provides an explicit geometric interpretation of the 35.26°
angle between coordinate systems, and includes worked
numerical examples demonstrating complete transformations.
This unified pedagogical treatment bridges the gap between
practical application and mathematical foundations, providing
educators with a complete geometrically intuitive framework
suitable for graduate-level instruction and professional
development.
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1 Introducton

Three-phase electrical systems constitute the foundation of the modern electrical
power infrastructure, from generation and transmission to motor drives and power
electronic converters. The analysis, control, and optimization of these systems
depend fundamentally on the mathematical transformations that convert voltages,
currents, and flux linkages between different reference frames. Among these
coordinate transformations, the Clarke transformation (abe—of0) and Park
transformation («0—dg0) have emerged as indispensable analytical tools since their

introduction in the early 20th century.
11 Historical Development and Significance

The theoretical foundations of three-phase coordinate transformations date back to
the pioneering work of Robert Park in 1929, who introduced what became known
as Park's transformation for analyzing synchronous machines. Park's
groundbreaking insight was to transform the stator quantities of a synchronous
machine to a reference frame rotating with the rotor, thereby turning time-varying
inductances into constants and simplifying the machine's equations. This
transformation enabled analytical solutions to problems that were previously
intractable in AC machine analysis, and laid the groundwork for modern control

theory applications in electrical machines.

Edith Clarke contributed by developing what is now called the Clarke
transformation, published in her work on symmetrical components and related
topics. Clarke's transformation offered an intermediate step that converts three-
phase quantities from the abc natural reference frame to a stationary two-axis
orthogonal reference frame («f), along with a zero-sequence component. This
transformation simplifies three-phase system analysis, by reducing the number of

variables while maintaining the essential information.

The mathematical elegance and practical utility of these transformations have made
them ubiquitous in power systems analysis. Modern applications range from Field-
Oriented Control (FOC) of AC machines [1], Space Vector Pulse Width Modulation
(SVPWM) for inverters [2], Direct Torque Control (DTC) strategies, grid-connected

converter control under unbalanced conditions [3], active power filter design [4],
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power quality monitoring and assessment [5], fault analysis in power systems [0] to

renewable energy system integration [7].
1.2 Educational Motivation and Pedagogical Need

Despite their widespread use across virtually every subdomain of power electronics
and electric drives, educational materials often present them in one of two ways:
either as matrix operations without a geometric foundation, or embedded within
machine-specific derivations that obscure the general mathematical structure. While
rigorous derivations exist in advanced textbooks [8], and recent tutorial papers [9]

and [10], there remains significant pedagogical value in a unified treatment that:

— Begins from the first principles with general three-phase voltage equations in
the time domain;

— Develops 3D spatial vector representation systematically, showing how
balanced quantities reside naturally in a specific plane;

—  Derives Clarke transformation through explicit geometric projection with clear
visualization;

— Connects the Park transformation as a time-varying rotation of the Clarke
frame;

— Explains the physical meaning of the key parameters, such as the 35.26° angle
and transformation coefficients;

— Provides a worked example suitable for classroom instruction and self-study;

— Addresses practical considerations for digital implementation.

Students in power electronics and electric machines courses benefit from seeing the
complete logical progression, from basic three-phase equations to transformation
matrices, with explicit geometric interpretation at each step.

1.3 Pedagogical Contribution

This work provides multiple angles of pedagogical contribution for power

electronics and electric machines education:
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For the Educators: A complete, systematic derivation suitable for graduate-level
courses in power electronics, electric machines, and power systems analysis;
Geometric visualizations and 3D representations that enhance student intuition;
Worked numerical examples ready for classroom use or homework assignments;

Practical implementation guidance connecting theory to digital control systems.

For the Students: Clear logical progression from familiar three-phase equations to
transformation matrices; Explicit geometric interpretation reducing reliance on
memorization; Connection between mathematical operations and physical

machine/system behavior.
1.4 Paper Organization

The remainder of this paper proceeds as follows: Section 2 establishes a
mathematical framework by presenting general three-phase voltage representations
in the time domain, developing a spatial vector form in a three-dimensional space.
Section 3 provides a systematic derivation of the Clarke transformation. Section 4
provides a systematic derivation of the Park transformation, explains the frequency
translation property, and presents a complete worked numerical example. Section 5

provides a conclusion with a summary of the pedagogical contributions.
2 Mathematical Framework
2.1 Three-Phase Voltage Representations

Three-phase voltages in general form and with arbitrary harmonic content can be

expressed as in (1.1):

v, (0)=3V,,, cos(hat - hc%+ )
h=0

v, (1) = z Vs COS(hart — hc%+ @y —hE)
=0

v.()=V,,, cos(hot - hc%+ @y +h3E
vy (1.1
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V. v, V. . .
where "ot Tbmh o Temh represent amplitudes of the h-th harmonic in each phase,

@ =271 is the fundamental angular frequency, c is the clock number of the three-

phase system, and Pa , Do , Pen

are the phase angles of the h-th harmonic.
A three-phase system can be represented in a three-dimensional plane, where each

phase is associated with each dimension in the way presented in (1.2):

Z V... cos(hawt — heZ + @,4)
V.(0) = 6

o[k B P

Vims COS(hort — hc% +@,, —hE)

e I

cm

L : (1.2)

V. cOS(hart —hc%+(pc,h +h3

>
JIi
o

where Ve® , av , Ve represents the resulting phasor of phases 4, 4, and ¢in a

three-dimensional plane, and % , % , EL represent the ort vectors for each
dimension.

The time dependence of the resulting three-phase voltage vector in a three-
dimensional plane is obtained by summing up the phasors. The amplitude invariant

voltage vector is a three-dimensional plane obtained using (1.3) as:

V()= \E(Va(t)Jr V() +V.(1))
(1.3)

Based on (1.2) and (1.3), the balanced harmonic in a three-phase system forms a
voltage vector in a three-dimensional space whose trajectory obeys the following

rules [11]:

1. Harmonics not divisible by 3 form a circle that lies in a plane (1.4)

I/(z(t)+l/zy(t)+l/c(t):0 (1‘4)
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1.1. 3h+1,h €1, parmonics have one direction of rotation
1.2. 3h+2,h €1, parmonics have the opposite direction of rotation

2. Harmonics divisible by 3 (3hah€1,00

) form a line that lies on a line
perpendicular to the previous plane, and has the mathematical description

presented in (1.5)

V.o =V,(0)=V.() (1.5)

The relative geometry of positive vector otientation, plane (1.4) and line (1.5) is
shown in Figures 1 a) and b). The positive vector orientation forms an angle of
35.26° with the plane (1.4). This angle arises naturally from the geometric constrain

that three balanced phase vectors must have zero sum. In a three-dimensional abe

space, consider three-unit vectors representing the phase axes: % =[1,0,0] (along the
phase A axis), E” =[0.1,0] (along the phase B axis), and % =10,0.1] (along the phase

C axis). A balanced plane is defined as Va@+V, 04V =0 e normal vector to

N =[1,1,11/\3

this plane is . The angle 0 between the phase A axis (%) and the

balance plane equals the complementary angle to that between % and the normal

i, 00s(90°=0) =¥, - W =[1,0,0]-[1/3.I/NBINBI= VB oy oeore. Sin0) =1/43

. Using the Pythagorean identity: cos(6) =2/3 . The angle between the balanced

plane and the phase A, B or C axes can be calculated as 0 = arctan(/N2) = 35.26° .

This angle is fundamental to understanding the transformation coefficients, which

arise as projections at this specific angle.
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Relative geometry

PlaneV _+V +V =0
a p ¢
LineV =V =V
a b ¢
e Ort phase A
i Ort phase B
4 Ort phase C

9 0
(]
&
£ 4
2
3
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>l
2
2
0
Phase B 2 5 ) Phase A
a)
Plane Ort phase B Ort phase A
Va+Vb+Vc=0
b)
Figure 1: Three-Dimensional Geometry of Three-Phase Systems
Source: own.
3 Clarke Transformation

Based on the analysis from the previous section, it can be concluded that, in the
three-phase space, the trajectories of the integer multiples of harmonics exist either
in the plane defined by equation, (1.4) or on line (1.5). This observation motivates
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the introduction of a new coordinate system that simplifies the representation of
three-phase voltage systems.

We adopt a three-axis coordinate system whose two independent axes lie in the plane
(1.4), such that:

—  The o-axis is collinear with the projection of the positive orientation of phase A

onto the plane (1.4);
—  The B-axis lies in the plane (1.4), leading the a-axis by 90°%;

—  The 0-axis is collinear with the zero-sequence line (1.5).
The graphical representation of this adopted coordinate system is shown in Figure

2. Based on Figure 1. b) the voltage projection of the abe system on the newly defined

aB0 system can be formulated as:

Valt)= \E (Va(t)-c08(0) + V5 (£) - cos(— 27”) +V (1) cos(%”)) -¢08(35.26")
V(t) = \E (Va(t)-sin(0)+ V5 (1) sin(zT”) +Vo(t)-sin(— 27”)) -c0s(35.26°)

Vo(t) = \E V() +V () +V o (1)) -sin(35.26")
(1.6)

Figure 2: Clarke transformation reference frame (0 system)

Source: own.
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By substituting €05(35.26') =2/3 A 5in(35.26) =13 , expression (1.6) can be

written in matrix form (1.7) with a new matrix defined in (1.8):

Val®) Va(t)
?ﬁ (t) = %[Taﬁo,abc :I ij (t)
Vo(®) Ve(t) -
I 2n 27
cos(0) COS(_T) COS(?)
I:TaﬂO,ubc:| =| sin(0) Sin(ZTﬂ-) sin(_?‘?ﬂ-)
o1 1
- ’ 2 (1.8)

The previous expression represents an amplitude-invariant Clarke transformation.

Coefficient 2/3 in (1.7) 1s often denoted as a scaling factor K in the literature, and
its variants, along with the area where the specific scaling factor finds application, is
presented in Table 1 [11].

Table 1: Clarke Transformation Variants

Scaling factor X Property Preserved Typical Applications

Amplitude- Peak voltage/cutrent Motor control (FOC),
. 2/3 < AC current/voltage
Invariant magnitudes
control
Powe'r- P /3 Instantancous power Power systems a-nalysls,
Invariant Power quality
Simplified 1 /3 Unit transformation Theor;tlcal analysis,
(orthonormal) Symmetrical components
Source: own
4 Park Transformation

The Clarke transformation establishes a stationary reference frame (x80) where two
axes lie in the plane of the balanced three-phase quantities. However, in this
stationary frame, the balanced AC quantities still appear as sinusoidally varying
signals. For many control applications—particularly field-oriented control of AC
machines—it is advantageous to work with DC quantities rather than AC signals.
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The previous transformation envisages fixed positioning of the coordinate system
axes relative to the orientation of the three-phase system axes. The idea of forming
a modified coordinate system can be considered, in which two axes lie in the same

plane as a3, but the orientation of the axes changes over time — the axes rotate with

some angular velocity o . Of the two axes that lie in the same plane as the af3 axes,
we define the d-axis and the g-axis in the plane to lead by 90° relative to #he d-axis.
As in the case of the 0 of system, let the 0-axis remain, oriented perpendicular to
the newly formed dg plane. A graphical illustration of the coordinate system is shown

in Figure 3.

Plane Axis 0
Va + Yb_tyif_o_'__ _
T Axis G-\

Figure 3: Park transformation reference frame (dg0 system)

Source: own.

In the same way as for the Clarke transformation, the voltage projection on the

newly defined 4 and ¢ axes can be formulated in matrix form as in (1.9) and (1.10):

Va(t) V()
V() =§[quo,ab¢] V(1)
Vo(f) V()

(1.9
cos(r)  cos(ar— 2%) cos(et + 2%)
[qu(),abc ] =~ Sin(g)t) - Sin(g)t - 27”) — sin(g)t + 27”)

1/2 1/2 1/2
: J (1.10)
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Or, in the case when the transformation to the dg0 system is done from the «f0
system, the transformation matrix has the form presented in (1.11) and (1.12):

Va(t) Vu(t)
I_/.fi(t) :[quo,aﬂo] Vﬂ(t)
Vo(t) Vo(t) (1.11)
cos(ar) sin(dx) 0
[Tigo.ap0 | =| —sin(ex) cos(ar) 0
0 0o 1
(1.12)

The expressions (1.9) and (1.10), or (1.11) and (1.12) represent an amplitude-
invariant Park transformation. Different values of the scaling factor K presented in
Table 1 can be applied as in the case of the Clarke transformation. Physical
interpretation of the Park transformation:

—  When the dg frame rotates at the same frequency as the of voltage/current
vectors (synchronous rotation), the projections onto & and ¢ axes become
constant (DC);

—  The d-axis is, typically, alighed with a meaningful reference (e.g., the rotor flux
in FOC);

— The g-axis represents the component in quadrature (90°) to the reference.
The Park transformation also acts as a frequency translator:

— The fundamental frequency (?) values ate seen as DC in the synchronous

rotating frame;
— DC can be seen as a negative fundamental (7¢);
— The 5th harmonic (Sa)) in the abe frame as the 6th harmonic with the opposite

direction of rotation (~0@) in the dg frame (odd harmonics have an opposite

direction of rotation in the plane relative to the fundamental harmonic);
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—  The 7th harmonic (7®) in the abe frame as the 6th harmonic (0@) in the dg
frame (even harmonics have the same direction of rotation in the plane relative

to the fundamental harmonic);

To solidify understanding, we present a complete worked example demonstrating
the transformation of a balanced three-phase system through both the Clarke and

Park transformations.

Given System: A balanced three-phase voltage system with fundamental harmonic

only:

— RMS voltage: 100 V per phase

—  Peak voltage: V.= 100v2 =141.42 v

— Frequency: f=30y,

—  Angular frequency: “~ 2zf =314.16 rad/s

ot—cZ+ o, =0
— Initial phase of the grid voltage vector (at ! =0): 6
— Initial Phase of the Park transformation reference frame (at = 0y =0 (d-
axis aligned with phase A)

Calculation of grid voltages in the abe domain at =0 using (1.1) is presented in
(1.13):

v (0)=  141.42c0s(0)  =141.42
v,(0)= 141.42c0s(0—120°) =-70.71

v, (0)= 141.42c0s(0+120°) =70.71 (113

When the amplitude-invariant Clarke transformation, presented in (1.7), is applied
to the instantaneous values obtained in (1.13), the following «f0 values can be
obtained, as in (1.14):
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_ cos(0) cos(—2—”) cos(z—ﬂ)
Va(0) ) ) 3 ; 141.42] [141.42
V5(0) | = 3| sin©) sin(Tﬂ) sin(—?ﬁ) ~70.71|=| 0
V0 (0) | | | 70.71 0
L 2 2 2] (1.14)

When the amplitude-invariant Park transformation from (1.9) is applied to(1.13),
(1.15) can be obtained:

cos(0) cos(O—z—ﬂ) cos(0+2—”)
Va() , ; ; 141.427 [141.42
V() =3| ~sin©) —sin(O—Tﬂ) —sin(0+Tﬂ) ~70.71|=| 0
Vo(t) 12 1/2 /2 70.71 0
(1.15)
5 Conclusion

This paper has presented the comprehensive mathematical derivations of the Clarke
and Park transformations, from first principles through systematic vector
representation. By progressing from three-phase voltage equations to spatial vectors
in a three-dimensional abr space, we established the rigorous geometric foundations

undetlying these ubiquitous transformations.

The Clarke transformation emerges as an orthogonal projection from the three-

V.o +V,0)+V.()=0

dimensional abc space onto the plane where balanced

quantities reside. The characteristic 35.26° angle and transformation coefficients

. . . _ . . . . \2/3
derive directly from geometric principles, with the amplitude-invariant ( /
scaling) formulation derived rigorously. The Park transformation follows as a time-
varying rotation of the Clarke frame, creating a frequency translation that converts

the AC quantities to DC under synchronous rotation.
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Coordinate transformations are not merely mathematical tools, but represent
fundamental insights about the geometry of three-phase systems. By understanding
these transformations from the first principles through systematic geomettic
derivation, the students and engineers develop a deeper intuition, that enhances their

ability to work with modern power electronic and motor control systems.
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Povzetek v slovenskem jeziku

Transformacije z vektorsko predstavitvijo v trifaznih sistemih. Clanek predstavlja celovito
obravnavo Clarkove in Parkove transformacije skozi sistemati¢no vektorsko predstavitev, zasnovano
posebej za izobrazevalne namene na podrocju mocnostne elektronike in vodenja elektri¢nih strojev.
Ceprav sta ti temeljni transformaciji vseprisotni v sodobnih aplikacijah — od poljsko usmerjenega
vodenja AC strojev do vodenja omrtezno prikljucenih pretvornikov — uéni materiali pogosto
predstavljajo transformacije bodisi kot matri¢ne operacije brez geometrijske osnove, bodisi v okviru
izpeljav, vezanih na dolocene tipe strojev, kar zamegli splosno matemati¢no strukturo. V tem delu se
posvetimo tej pedagoski vrzeli z doslednim prehodom od trifaznih napetostnih enacb v ¢asovni domeni
do prostorske vektorske predstavitve v tridimenzionalnem prostoru. Clarkovo transformacijo
izpeljemo kot eksplicitno geomettijsko projekcijo na ravnino, v kateri leZijo uravnotezene veli¢ine, nato
pa Parkovo transformacijo kot ¢asovno spremenljivo rotacijo Clarkovega koordinatnega sistema. Delo
vzpostavi amplitudno-invariantno formulacijo, poda jasno geometrijsko razlago 35,26° kota med
koordinatnimi sistemi ter vkljucuje numeri¢ne primere z vsemi koraki transformacij. Ta enotna
pedagoska obravnava zapolnjuje vizel med prakti¢no uporabo in matematicnimi temelji ter ponuja
pedagoskemu kadru popolnoma geometrijsko intuitiven okvir, primeren za podiplomsko poucevanje
in strokovno usposabljanje.
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