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Abstract This paper presents a comprehensive pedagogical 
treatment of Clarke and Park transformations through 
systematic vector representation, designed specifically for 
educational purposes in power electronics and motor control 
courses. While these fundamental transformations are 
ubiquitous in modern applications–from field-oriented control 
of AC machines to grid-connected converter control–
educational materials often present them either as matrix 
operations without geometric foundation, or embedded within 
machine-specific derivations that obscure the general 
mathematical structure. We address this pedagogical need by 
progressing systematically from three-phase voltage equations 
in the time domain to a spatial vector representation in three-
dimensional space, deriving the Clarke transformation through 
explicit geometric projection onto the plane where balanced 
quantities reside, and, subsequently, deriving the Park 
transformation as a time-varying rotation of the Clarke frame. 
The work establishes an amplitude-invariant formulation, 
provides an explicit geometric interpretation of the 35.26° 
angle between coordinate systems, and includes worked 
numerical examples demonstrating complete transformations. 
This unified pedagogical treatment bridges the gap between 
practical application and mathematical foundations, providing 
educators with a complete geometrically intuitive framework 
suitable for graduate-level instruction and professional 
development. 
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1 Introducton 
 
Three-phase electrical systems constitute the foundation of the modern electrical 
power infrastructure, from generation and transmission to motor drives and power 
electronic converters. The analysis, control, and optimization of these systems 
depend fundamentally on the mathematical transformations that convert voltages, 
currents, and flux linkages between different reference frames. Among these 
coordinate transformations, the Clarke transformation (abc→αβ0) and Park 
transformation (αβ0→dq0) have emerged as indispensable analytical tools since their 
introduction in the early 20th century. 
 
1.1 Historical Development and Significance 
 
The theoretical foundations of three-phase coordinate transformations date back to 
the pioneering work of Robert Park in 1929, who introduced what became known 
as Park's transformation for analyzing synchronous machines. Park's 
groundbreaking insight was to transform the stator quantities of a synchronous 
machine to a reference frame rotating with the rotor, thereby turning time-varying 
inductances into constants and simplifying the machine's equations. This 
transformation enabled analytical solutions to problems that were previously 
intractable in AC machine analysis, and laid the groundwork for modern control 
theory applications in electrical machines. 
 
Edith Clarke contributed by developing what is now called the Clarke 
transformation, published in her work on symmetrical components and related 
topics. Clarke's transformation offered an intermediate step that converts three-
phase quantities from the abc natural reference frame to a stationary two-axis 
orthogonal reference frame (αβ), along with a zero-sequence component. This 
transformation simplifies three-phase system analysis, by reducing the number of 
variables while maintaining the essential information. 
 
The mathematical elegance and practical utility of these transformations have made 
them ubiquitous in power systems analysis. Modern applications range from Field-
Oriented Control (FOC) of AC machines [1], Space Vector Pulse Width Modulation 
(SVPWM) for inverters [2], Direct Torque Control (DTC) strategies, grid-connected 
converter control under unbalanced conditions [3], active power filter design [4], 
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power quality monitoring and assessment [5], fault analysis in power systems [6] to 
renewable energy system integration [7]. 
 
1.2  Educational Motivation and Pedagogical Need 
 
Despite their widespread use across virtually every subdomain of power electronics 
and electric drives, educational materials often present them in one of two ways: 
either as matrix operations without a geometric foundation, or embedded within 
machine-specific derivations that obscure the general mathematical structure. While 
rigorous derivations exist in advanced textbooks [8], and recent tutorial papers [9] 
and [10], there remains significant pedagogical value in a unified treatment that: 
 
− Begins from the first principles with general three-phase voltage equations in 

the time domain; 
− Develops 3D spatial vector representation systematically, showing how 

balanced quantities reside naturally in a specific plane; 
− Derives Clarke transformation through explicit geometric projection with clear 

visualization; 
− Connects the Park transformation as a time-varying rotation of the Clarke 

frame; 
− Explains the physical meaning of the key parameters, such as the 35.26° angle 

and transformation coefficients; 
− Provides a worked example suitable for classroom instruction and self-study; 
− Addresses practical considerations for digital implementation. 
 
Students in power electronics and electric machines courses benefit from seeing the 
complete logical progression, from basic three-phase equations to transformation 
matrices, with explicit geometric interpretation at each step. 
 
1.3  Pedagogical Contribution 
 
This work provides multiple angles of pedagogical contribution for power 
electronics and electric machines education: 
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For the Educators: A complete, systematic derivation suitable for graduate-level 
courses in power electronics, electric machines, and power systems analysis; 
Geometric visualizations and 3D representations that enhance student intuition; 
Worked numerical examples ready for classroom use or homework assignments; 
Practical implementation guidance connecting theory to digital control systems. 
 
For the Students: Clear logical progression from familiar three-phase equations to 
transformation matrices; Explicit geometric interpretation reducing reliance on 
memorization; Connection between mathematical operations and physical 
machine/system behavior. 
 
1.4  Paper Organization 
 
The remainder of this paper proceeds as follows: Section 2 establishes a 
mathematical framework by presenting general three-phase voltage representations 
in the time domain, developing a spatial vector form in a three-dimensional space. 
Section 3 provides a systematic derivation of the Clarke transformation. Section 4 
provides a systematic derivation of the Park transformation, explains the frequency 
translation property, and presents a complete worked numerical example. Section 5 
provides a conclusion with a summary of the pedagogical contributions. 
 
2 Mathematical Framework 
 
2.1 Three-Phase Voltage Representations 
 
Three-phase voltages in general form and with arbitrary harmonic content can be 
expressed as in (1.1): 
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where ,am hV , ,bm hV , ,cm hV  represent amplitudes of the h-th harmonic in each phase, 
2 fω π=  is the fundamental angular frequency, c is the clock number of the three-

phase system, and ,a hϕ , ,b hϕ , ,c hϕ  are the phase angles of the h-th harmonic. 
 
A three-phase system can be represented in a three-dimensional plane, where each 
phase is associated with each dimension in the way presented in (1.2): 
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where ( )aV t


, ( )bV t


, ( )cV t


 represents the resulting phasor of phases a, b, and c in a 

three-dimensional plane, and 


aV , 


bV , 


cV  represent the ort vectors for each 
dimension. 
The time dependence of the resulting three-phase voltage vector in a three-
dimensional plane is obtained by summing up the phasors. The amplitude invariant 
voltage vector is a three-dimensional plane obtained using (1.3) as: 
 

2( ) ( ( ) ( ) ( ))
3g a b cV t V t V t V t= + +

   

                      (1.3) 
 

Based on (1.2) and (1.3), the balanced harmonic in a three-phase system forms a 
voltage vector in a three-dimensional space whose trajectory obeys the following 
rules [11]: 
 
1. Harmonics not divisible by 3 form a circle that lies in a plane (1.4) 

 

( ) ( ) ( ) 0a b cV t V t V t+ + =
  

            (1.4) 
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1.1. 3 1, 1,h h+ ∈ ∞  harmonics have one direction of rotation 
 

1.2. 3 2, 1,h h+ ∈ ∞  harmonics have the opposite direction of rotation 
 

2. Harmonics divisible by 3 ( 3 , 1,h h∈ ∞ ) form a line that lies on a line 
perpendicular to the previous plane, and has the  mathematical description 
presented in (1.5) 
 

( ) ( ) ( )a b cV t V t V t= =
  

            (1.5) 
 
The relative geometry of positive vector orientation, plane (1.4) and line (1.5) is 
shown in Figures 1 a) and b). The positive vector orientation forms an angle of 
35.26° with the plane (1.4). This angle arises naturally from the geometric constrain 
that three balanced phase vectors must have zero sum. In a three-dimensional abc 

space, consider three-unit vectors representing the phase axes: 
 [1,0,0]aV = (along the 

phase A axis), 
 [0,1,0]bV = (along the phase B axis), and 

 [0,0,1]cV = (along the phase 

C axis). A balanced plane is defined as ( ) ( ) ( ) 0a b cV t V t V t+ + =
  

. The normal vector to 

this plane is 
 [1,1,1] 3N = . The angle θ  between the phase A axis (


aV ) and the 

balance plane equals the complementary angle to that between 


aV  and the normal 
N : 

 cos(90 ) [1,0,0] [1 3,1 3,1 3] 1 3aV Nθ° − = ⋅ = ⋅ = . Therefore, sin( ) 1 3θ =

. Using the Pythagorean identity: cos( ) 2 3θ = . The angle between the balanced 

plane and the phase A, B or C axes can be calculated as (1 2) 35.26arctanθ = = ° . 
This angle is fundamental to understanding the transformation coefficients, which 
arise as projections at this specific angle. 
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a) 

 
b) 
 

Figure 1: Three-Dimensional Geometry of Three-Phase Systems 
Source: own. 

 
3 Clarke Transformation 
 
Based on the analysis from the previous section, it can be concluded that, in the 
three-phase space, the trajectories of the integer multiples of harmonics exist either 
in the plane defined by equation, (1.4) or on line (1.5). This observation motivates 
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the introduction of a new coordinate system that simplifies the representation of 
three-phase voltage systems. 
 
We adopt a three-axis coordinate system whose two independent axes lie in the plane 
(1.4), such that: 
 
− The α-axis is collinear with the projection of the positive orientation of phase A 

onto the plane (1.4); 
− The β-axis lies in the plane (1.4), leading the α-axis by 90°; 
− The 0-axis is collinear with the zero-sequence line (1.5). 
 
The graphical representation of this adopted coordinate system is shown in Figure 
2. Based on Figure 1. b) the voltage projection of the abc system on the newly defined 
αβ0 system can be formulated as: 
 

 
0

2 2 2( ) ( ( ) cos(0) ( ) cos( ) ( ) cos( )) cos(35.26 )
3 3 3
2 2 2( ) ( ( ) sin(0) ( ) sin( ) ( ) sin( )) cos(35.26 )
3 3 3
2( ) ( ( ) ( ) ( )) sin(35.26 )
3

a b c

a b c

a b c

V t V t V t V t

V t V t V t V t

V t V t V t V t

α

β

π π

π π

= ⋅ ⋅ + ⋅ − + ⋅ ⋅

= ⋅ ⋅ + ⋅ + ⋅ − ⋅

= ⋅ + + ⋅







   

   

   

               
                                                                                                               (1.6) 

 

 
 

Figure 2: Clarke transformation reference frame (αβ0 system) 
Source: own. 
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By substituting cos(35.26 ) 2 3 sin(35.26 ) 1 3= ∧ = 

, expression (1.6) can be 
written in matrix form (1.7) with a new matrix defined in (1.8): 
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The previous expression represents an amplitude-invariant Clarke transformation. 

Coefficient 2 3  in (1.7) is often denoted as a scaling factor K in the literature, and 
its variants, along with the area where the specific scaling factor finds application, is 
presented in Table 1 [11]. 
 

Table 1: Clarke Transformation Variants 
 

 Scaling factor K Property Preserved Typical Applications 

Amplitude-
Invariant 2 3  

Peak voltage/current 
magnitudes 

Motor control (FOC), 
AC current/voltage 

control 
Power-
Invariant 2 3

 
Instantaneous power Power systems analysis, 

Power quality 

Simplified 1 3
 

Unit transformation 
(orthonormal) 

Theoretical analysis, 
Symmetrical components 

Source: own 
 
4 Park Transformation 
 
The Clarke transformation establishes a stationary reference frame (αβ0) where two 
axes lie in the plane of the balanced three-phase quantities. However, in this 
stationary frame, the balanced AC quantities still appear as sinusoidally varying 
signals. For many control applications–particularly field-oriented control of AC 
machines–it is advantageous to work with DC quantities rather than AC signals. 
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The previous transformation envisages fixed positioning of the coordinate system 
axes relative to the orientation of the three-phase system axes. The idea of forming 
a modified coordinate system can be considered, in which two axes lie in the same 
plane as αβ, but the orientation of the axes changes over time — the axes rotate with 

some angular velocity ω . Of the two axes that lie in the same plane as the αβ axes, 
we define the d-axis and the q-axis in the plane to lead by 90° relative to the d-axis. 
As in the case of the 0 αβ system, let the 0-axis remain, oriented perpendicular to 
the newly formed dq plane. A graphical illustration of the coordinate system is shown 
in Figure 3. 
 

 
 

Figure 3: Park transformation reference frame (dq0 system) 
Source: own. 

 
In the same way as for the Clarke transformation, the voltage projection on the 
newly defined d and q axes can be formulated in matrix form as in (1.9) and (1.10): 
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Or, in the case when the transformation to the dq0 system is done from the αβ0 
system, the transformation matrix has the form presented in (1.11) and (1.12): 
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 
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cos( ) sin( ) 0
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0 0 1
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t t
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ω ω

ω ω
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   = −   
                                              (1.12) 

 
The expressions (1.9) and (1.10), or (1.11) and (1.12) represent an amplitude-
invariant Park transformation. Different values of the scaling factor K presented in 
Table 1 can be applied as in the case of the Clarke transformation. Physical 
interpretation of the Park transformation: 
 
− When the dq frame rotates at the same frequency as the αβ voltage/current 

vectors (synchronous rotation), the projections onto d and q axes become 
constant (DC); 

− The d-axis is, typically, aligned with a meaningful reference (e.g., the rotor flux 
in FOC); 

− The q-axis represents the component in quadrature (90°) to the reference. 
 
The Park transformation also acts as a frequency translator: 
 
− The fundamental frequency (ω ) values are seen as DC in the synchronous 

rotating frame; 
− DC can be seen as a negative fundamental ( ω− ); 

− The 5th harmonic ( 5ω ) in the abc frame as the 6th harmonic with the opposite 

direction of rotation ( 6ω− ) in the dq frame (odd harmonics have an opposite 
direction of rotation in the plane relative to the fundamental harmonic); 



156 JOURNAL OF ENERGY TECHNOLOGY  
Vol. 18, No. 3, November 2025   

 

− The 7th harmonic ( 7ω ) in the abc frame as the 6th harmonic ( 6ω ) in the dq 
frame (even harmonics have the same direction of rotation in the plane relative 
to the fundamental harmonic); 

 
To solidify understanding, we present a complete worked example demonstrating 
the transformation of a balanced three-phase system through both the Clarke and 
Park transformations. 
 
Given System: A balanced three-phase voltage system with fundamental harmonic 
only: 
 
− RMS voltage: 100 V per phase 

− Peak voltage: 100 2 141.42mV = = V 

− Frequency: 50f = Hz 

− Angular frequency: 2 314.16fω π= =  rad/s 

− Initial phase of the grid voltage vector (at 0t = ): 
0

6 at c πω ϕ− + =
 

− Initial Phase of the Park transformation reference frame (at 0t = ):  0tω =  (d-
axis aligned with phase A) 

 

Calculation of grid voltages in the abc domain at 0t =  using (1.1) is presented in 
(1.13): 
 

(0) 141.42cos(0) 141.42
(0) 141.42cos(0 120 ) 70.71
(0) 141.42cos(0 120 ) 70.71

a

b

c

v
v
v

= =
= − ° = −
= + ° =                                            (1.13) 

 
When the amplitude-invariant Clarke transformation, presented in (1.7), is applied 
to the instantaneous values obtained in (1.13), the following αβ0 values can be 
obtained, as in (1.14): 
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

     (1.14) 
 
When the amplitude-invariant Park transformation from (1.9) is applied to(1.13), 
(1.15) can be obtained: 
 

 

0

2 2cos(0) cos(0 ) cos(0 )
3 3( ) 141.42 141.42

2 2 2( ) sin(0) sin(0 ) sin(0 ) 70.71 0
3 3 3

70.71 0( ) 1 2 1 2 1 2

d

q

V t

V t

V t

π π

π π
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

            
                                                                                                                        (1.15) 
 
5 Conclusion 
 
This paper has presented the comprehensive mathematical derivations of the Clarke 
and Park transformations, from first principles through systematic vector 
representation. By progressing from three-phase voltage equations to spatial vectors 
in a three-dimensional abc space, we established the rigorous geometric foundations 
underlying these ubiquitous transformations. 
 
The Clarke transformation emerges as an orthogonal projection from the three-

dimensional abc space onto the plane ( ) ( ) ( ) 0a b cV t V t V t+ + =
  

 where balanced 
quantities reside. The characteristic 35.26° angle and transformation coefficients 

derive directly from geometric principles, with the amplitude-invariant ( 2 3  
scaling) formulation derived rigorously. The Park transformation follows as a time-
varying rotation of the Clarke frame, creating a frequency translation that converts 
the AC quantities to DC under synchronous rotation. 
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Coordinate transformations are not merely mathematical tools, but represent 
fundamental insights about the geometry of three-phase systems. By understanding 
these transformations from the first principles through systematic geometric 
derivation, the students and engineers develop a deeper intuition, that enhances their 
ability to work with modern power electronic and motor control systems. 
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Povzetek v slovenskem jeziku 
 
Transformacije z vektorsko predstavitvijo v trifaznih sistemih. Članek predstavlja celovito  
obravnavo Clarkove in Parkove transformacije skozi sistematično vektorsko predstavitev, zasnovano 
posebej za izobraževalne namene na področju močnostne elektronike in vodenja električnih strojev. 
Čeprav sta ti temeljni transformaciji vseprisotni v sodobnih aplikacijah – od poljsko usmerjenega 
vodenja AC strojev do vodenja omrežno priključenih pretvornikov – učni materiali pogosto 
predstavljajo transformacije bodisi kot matrične operacije brez geometrijske osnove, bodisi v okviru 
izpeljav, vezanih na določene tipe strojev, kar zamegli splošno matematično strukturo. V tem delu se 
posvetimo tej pedagoški vrzeli z doslednim prehodom od trifaznih napetostnih enačb v časovni domeni 
do prostorske vektorske predstavitve v tridimenzionalnem prostoru. Clarkovo transformacijo 
izpeljemo kot eksplicitno geometrijsko projekcijo na ravnino, v kateri ležijo uravnotežene veličine, nato 
pa Parkovo transformacijo kot časovno spremenljivo rotacijo Clarkovega koordinatnega sistema. Delo 
vzpostavi amplitudno-invariantno formulacijo, poda jasno geometrijsko razlago 35,26° kota med 
koordinatnimi sistemi ter vključuje numerične primere z vsemi koraki transformacij. Ta enotna 
pedagoška obravnava zapolnjuje vrzel med praktično uporabo in matematičnimi temelji ter ponuja 
pedagoškemu kadru popolnoma geometrijsko intuitiven okvir, primeren za podiplomsko poučevanje 
in strokovno usposabljanje. 
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