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Abstract: This paper treats a three level nonlinear supply chain, which consists from a 

manufacturer, a distributor and a retailer as a dynamical system. The dynamic behavior of supply 

chain is modelled by using the continuous Lorenz-like model with disturbances. The Lorenz model 

is known from physics in the study of dissipative hydrodynamical systems with excitation and 

represents a paradigmatic example of the deterministic system, which is able to exhibit chaotic 

motions. Very complex supply chain relationships are modelled due to the information flow 

distortion at the distributor, caused by disturbances, which appear at the retailer. By using the 

proposed nonlinear supply chain model, the steady state, the saturation and the chaotic state of the 

supply chain are analyzed,  respectively. The range of parameter values, which are characteristic 

for the appearance of such states are determined. In the paper, the meaning of the regular state in 

which the supply chain cannot keep due to the disturbances and the risk of the saturation state are 

explained. In the analysis of such states, the multistage homotopic perturbation method is used.  

The gained results are checked analyticaly or by the help of standard numerical integration, such 

as the Runge-Kutta method . 

Key words:  Nonlinear supply chains, dynamics of Lorenz-like model, characteristic states, 

multistage homotopic perturbation method. 

Povzetek: Članek  obravnava trinivojsko nelinearno oskrbovalno verigo, ki sestoji iz proizvajalca, 

distributerja in trgovca na drobno kot dinamični sistem. Dinamično obnašanje oskrbovalne verige 

je modelirano z zveznim  modelom z motnjami, ki je podoben Lorenzovemu sistemu. Lorenzov 

system je znan iz fizike v študiju disipativnih hidrodinamičnih sistemov z vzbujanjem in velja za 

enega izmed tipičnih determinističnih sistemov, ki lahko izvajajo kaotična nihanja. V oskrbovalni 

verigi modeliramo kompleksne razmere zaradi popačenja informacijskega toka pri distributerju, 

ki jih izzovejo motnje, s katerimi se sooča trgovec. S pomočjo modela je izvedena analiza 

ustaljenega stanja, stanja nasičenja in kaotičnega stanja oskrbovalne verige. Določena so območja 

vrednosti parametrov oskrbovalne verige za nastanek posameznih stanj. V članku je pojasnjen 

pomen regularnega stanja oskrbovalne verige, v katerem oskrbovalna veriga zaradi motenj v 

splošnem ne more vztrajati in stanje nasičenja kot enega najnevarnejših stanj oskrbovalne verige. 

V analizi teh stanj je v članku uporabljena večstopenjska homotopsko perturbacijska metoda. 

Dobljeni rezultati so preverjeni analitično oziroma s pomočjo standardne numerične metode 

Runge-Kutta.  

Ključne besede: Nelinearne oskrbovalne verige, dinamika sistema, karakteristična stanja, 

večstopenjska homotopsko perturbacijska metoda. 
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1. Introduction 

Supply chains and networks consist of many players 

such as suppliers, manufacturers, distributors and 

retailers. Each individual player in supply chain is trying 

to achieve the maximum profit and to ensure the 

maximum customer satisfaction. Besides this individual 

goals, all players also have global objectives in order to 

create a resilient and competitive supply chain. 

According to Christopher [1], competition in the future 
belongs to competing supply chains, not to competing 

individual organizations. Supply chains are dynamic 

systems, which are characterized by the downstream 

material flow in the direct path and an information flow, 

running in both downstream direct path and upstream 

feedback path. Both flows are subjected to the various 

kind of temporaly varying uncertainties, such as demand 

uncertainty, supply uncertainty, delivery uncertainty and 

forecasting uncertainty, because supply chains are 

working in an increasingly dynamic and volatile global 

market-place. Supply chain structure, which consists 
from the direct path and feedback path is typical for the 

control systems, known from technical disciplines. 

Application of the nonlinear theory of dynamical systems 

together with a great computational power of today's 

computers makes modelling and simulation of supply 

chains possible and offers a deep understanding of their 

behavior.  

2. Nomenclature 

k = the safety stock coefficient at the manufacturer 

r =   the information distortion rate at the distributor 

m =    the customer order satisfaction rate at the retailer  

i =    the discrete time period 

xi =    the quantity of products demanded by retailer in  
  ith time period 

yi =    the quantity of products, which can be supplied  
  by distributor in ith time period 

zi =   the quantity of products, which can be produced  

 by manufacturer in ith time period in dependence 

on the order 

3. Three level model of nonlinear supply chain  

Modelling of supply chains is faced in general with 

setting, optimization and control of the system model. 

Application of  principles of dynamics in business 

systems was introduced by Forrester [2] in the sixties of 

20th century. First attempts were based on the linear 

theory of dynamical systems with the most important 

principle of superposition. The application of the linear 

theory in supply chain modelling has led to important 

findings regarding the supply chain stability. 

Furthermore, linear theory was able to explain the 
bullwhip phenomenon. However, due to the 

superposition principle, it was unable to predict a wide 

variety of states, which can supply chain passes. The main 

reason why linear theory of supply chains is not sufficient 

is the fact, that linear systems  cannot exhibit chaos. 

Although chaotic systems are not random but 

deterministic, they are sensitive on small changes of 

initially conditions, which cause unpredictable system 

responses. This phenomenon of unpredictability is the 

characteristic property of chaotic systems, which cannot 

happen in linear supply chains. In order to understand 

supply chain phenomena in a very complex system, the 

nonlinear supply chain model must be envisaged (see [3] 

and references therein). Supply chains have in general a 

multilevel structure or even are forming networks, 

however they are organized to connect three key players: 
manufacturers, distributors and retailers. In order to apply 

analytical tools in a very complex nonlinear supply chain, 

a three level supply chain, which consists of one 

manufacturer, one distributor and one retailer, is 

modelled in this paper. Two kinds of flow characterize 

the supply chain: the product flow, which flows 

downstream from the manufacturer via distributor to the 

retailer and information flow, which flows downstream 

and upstream, respectively through the supply chain. 

Both downstream flow running in a so called direct path, 

while the upstream information flow is running in the so 
called feedback. The presence of feedback makes the 

supply chain controllable. Beside of direct path and 

feedback, respectively, there exist several 

interconnections in each stage, which make the supply 

chain nonlinear. The structure of three level nonlinear 

supply chain treated in the paper is shown in Fig.1. The 

mathematical model of the supply chain consists from 

three equations, one equation for each player. Thus, if 

desired, the mathematical model can be expanded with 

additional equations, corresponding to the multilevel 

supply chain structure, but on the cost of the inevitable 

increase in the mathematical complexity. To simplify the 
structure of nonlinear supply chain on three level, the 

dynamics between the supplier and manufacturer is 

incorporated into the manufacturer. Due to the simplified 

structure, uncertainties, which can be generated by 

supplier, are not considered in the model. Instead of this, 

it is assumed, that the manufacturer holds the safety stock 

in order to reduce the small production batches and 

eventually to satisfy the increased demand. The height of 

the safety stock is regulated by means of the safety stock 

coefficient k at the manufacturer.  Despite the above 

simplification, the model can exhibit the great complexity 
at different levels of the supply chain and contains the 

inventory concept at all stages. The emphasis in this 

model is on the information distortion rate r at the 

distributor, which plays the role of a factor that is 

influenced by uncertainties from the retailer. Before the 

demand information is presented to the manufacturer, it 

is distorted in order to avoid the uncertainties generated 

by retailer. The retailer self tries to avoid the uncertainties 

that pass from the customer and distributor, using his own 

intuition and experience. The customer order satisfaction 

rate m is introduced at the retailer as a means to avoid the 

uncertainties that are generated by the customer. It is also 
assumed, that the customer order satisfaction rate can be 

used for mitigating the uncertainties, which come from 

the distributor. 
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In order to form a mathematical model of the supply 

chain, depicted on Fig.1, it is assumed that the demand 

information, which flows upstream the chain from the 

retailer to the distributor and from the distributor to the 

manufacturer, respectively, needs a unit time to be 

transmitted along links of the supply chain. In other 
words, the distributor  processing of demand information 

within the ith time period is what retailer requested in the 

i-1th time period. Similarly, the manufacturer processing 

of demand information within the ith time period is what 

distributor requested in the i-1th time period. The delay in 

processing of demand information causes the information 

distortion.  

The important goal of managing the supply chain is 

not only to mitigate the influence of uncertainties on the 

ordering policy, but also the fulfillment of the market 

demand. The quantity of demanded products in the 

current ith time period is always dependent on the demand 
satisfaction in the previous i-1th time period. This is the 

key principle in the managing of the supply chain because 

it determines the ordering pattern upstream the chain 

stages. Decision of the individual player in the supply 

chain on the order and his inventory in the current ith time 

period is made after considering the information 

distortion and his present inventory level. 

As is mentioned previously, the demand information 

is transmitted from the stage to the subsequent upstream 

stage of the supply chain with a delay of one unit time. As 

can be seen in Fig. 1, the outcoming order quantity is not 
the same as the requested incoming order quantity at any 

level. The order quantity xi of the retailer in the ith time 

period is linearly coupled with the distributor and 

depends on the demand myi-1, which is satisfied by 

distributor in the previous period of time and on the 

corresponding order quantity of the retailer mxi-1 in the 

previous time period, where m is the ratio at which the 

customer demand is satisfied. Thus, the equation of the 

retailer, which reflects the quantity demanded by 

customers, reads: 

  1 1i i ix m y x    (1)  

The downstream as well as the upstream information 

flow between distributor, the producer and the retailer is 

nonlinear due to the strong coupling. The quantity of 

products yi, which can be supplied by distributor in ith 

time period is affected by the combined effect xi-1zi-1 of 

the retailers order quantity xi-1  and the manufacturers 
quantity of produced goods zi-1 in the previous time 

period, which give rise to the quadratic nonlinearity. The 

distributor takes into account that the order information 

received from the retailer might be distorted in the 

amount rxi-1 and reduces the inventory level for the 

amount xi-1zi-1. Thus the distributor equation of the 

quantity of products yi, which can be supplied in ith time 
period, is given by the relation: 

  1 1i i iy x r z   , (2) 

where r is the information distortion coefficient. 

The third equation is the manufacturer equation, 

which gives the production quantity in the ith time period. 

The production quantity under given assumptions 

depends on the distributor's order and the safety stock. Of 

course, distributor's order depends again on the reailer's 

order xi-1 in the previous time period, so that the 

manufacturer must take into account the combined effect 

xi-1yi-1 of the retailer and distributor output. Before the 
manufacturer makes the production decision zi  for the ith  

time period, the quadratic nonlinear contribution  xi-1yi-1 

is increased for the share of  safety stock kzi-1:  

 1 1 1i i i iz x y kz    , (3) 

where k is the safety stock coefficient at the manufacturer. 

System of Eqs. (1), (2) and (3) describes a discrete 

model of the nonlinear supply chain. However, the 

discrete time unit of one period is quit small in respect to 

the long term behavior. Thus, instead of the discrete 

system of equations, it is resonable, to study the 

continuous system, which can be derived from the 
discrete equations by approximating the difference 

quotients through time derivatives, defined in the 

following way: 
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y y y
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y y z

T


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  




  



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

 (4) 

By using substitutions (4), the discrete equations (1), 

(2) and (3) are rewritten on the continuous form: 

 
 

 

 

1

1

x my m x

y x r z y

z xy k z

  


  
   

, (5) 

Fig. 1. Structure of three level nonlinear supply chain. 
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where index i-1 is omitted on both sides of equations (5), 
because it is meaningless in the continuous system. 

The system of equations (5) is the Lorenz-like system, 

which can exhibit chaotic motions in the proper range of 

system parameters. In fact, the system (5) differs from 

original Lorenz equations: 

 
 x y x

y rx xz y

z xy bz

 

  

 

, (6) 

only in the first equation. Second and third equation in 
both systems are in fact the same, because the parameter 

b in third equation of the system (6) can be interpreted as 

the substitution for the term 1- k in the third equation of 

the system (5). However, the first equation of the system 

(5) can be rewriten on the form  1x my m x  

 d y x   , where 1 1
1

1, 1m m
d m

m 
  

  


        

(see Ref. [3]). Thus, first equation in both systems differ 

in fraction 1/σ, which appears in the quotient m/σ = 1 - 

1/σ. Parameters σ, r, b of the original Lorenz system can 

take positive values only. Due to the small differences 

between Lorenz system and the system (5), the values of 

parameters m, r and of the term 1-k take positive values, 

too. In the study, the values of parameters m, r, k will be 

fixed giving the so called "reference supply chain model". 
Until now, the time dependent perturbations of 

uncertainties are not considered at all. The external 

disturbances have the additive character and can affect 

any of the three levels of the supply chain. When 

uncertainties are added at one stage, they can propagate 

both upstream and downstream, which is the common 

phenomenon exhibited in a real supply chain. Due to the 

additivity, the uncertainties at each level of the supply 

chain can be simply analyzed by means of the    

generalized  Lorenz-like     system     (5)   in  the                                                                              

following form: 

 
   

 

   

1

2

2

1

1

x my m x d t

y rx x z y d t

z x y k z d t

     

       

      

, (7) 

where primes denote the change of variables in respect to 

the variables of the reference supply chain model. In the 

following study, we restrict the form of disturbances d1(t), 

d2(t) and d3(t) on the periodic (harmonic) case only and 

thus allow the periodic seasonal variations. 

Influence of internal disturbances on the behavior of 
the presented nonlinear supply chain model is not studied 

in this paper due to the limited space, although this study 

is quit possible, when the temporal dependencies of 

parameters m, r, k are allowed.  

4. States of nonlinear supply chain in the 

reference model 

Equations (5) describe the evolution of the nonlinear 
supply chain as the time increases. Due to the nonlinear 

character of equations, the supply chain undergoes 

different states through the evolution. Generally 

speaking, the evolution of a (nonlinear) dynamic system 

is divided into two phases. The first phase belongs to the 

so called transient phenomenon, which appears after the 

system is initially disturbed and exponentially dies after a 

short period of time. After passing the transient 

phenomenon, a dynamic system enters the second phase, 

which may be a saturation state, a steady state, or chaotic 

state. In the sequel, these states are discussed only in 

respect to the Lorenz-like system (5). 

Saturation state corresponds to the equilibrium or 

fixed point of the system, where derivatives on the left 

hand side of Eqs. (5) vanishes. This means, that all 
dynamic forces of the system are mutually canceled and 

the system is at rest. While this state is a desired state in 

physics and engineering, it is a dangerous state in 

economics and supply chain managing. Existence and 

stability of fixed points depend on parameter r. For 
11
m

r   , there exists only one fixed point at the origin 

x=0, y=0, z=0, which can be proved stable. For 11
m

r   , 

the origin loses its stability and a pair of new fixed points 

appear, which are stable in the range 11 cm
r r   , where 

rc denotes the critical value of the parameter r. By solving 

the nonlinear algebraic system of equations: 

 1 0,my m x    0,rx xz y    1 0xy k z   , 

where m>0, 11
m

r   , 1> k >0, the following nontrivial 

pair of fixed points: 

           1
1 1 1

1 1 , 1 1 ,m m m m
e e em m m m

x k r y k r z r 
  

            
   

(8) 

is obtained, where the subscript e denotes the equilibrium. 

Stability of solutions of equations (5) is examined 

through linearization of the system near the equilibrium 

point. By using Jacobian matrix, the linearized equations 

are written successfuly in the following matrix form: 

 
 1 0

1

1

e e

e e

x m m x

y r z x y

z y x k z

 

 

 

     
    

       
        

, (9) 

where δx, δy, δz are small perturbations around the 

equilibrium point, giving a nonequlibrium state 

, ,e e ex x x y y y z z z        and where 

, ,x y z   are corresponding perturbations of 

derivatives. From (9) we derive the characteristic 
equation of eigenvalues:  

 

(10) 
 

 

When the equilibrium point is the origin, the 

characteristic equation simplifies: 

      2
2 1 1 1 0m m r k          

 
, (11) 

giving three eigenvalues: 
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     

2
2 2 4 1 1

1 2,3 2
1,

m m m r
k 

        
   . (12) 

From (12) it is clear, that all 1 2 3, ,   have negative 

values when 11
m

r   , (m>0,1> k >0), however 

1 30, 0    and 2 0   when 11
m

r   . This proves, 

that the origin is stable when 11
m

r    and becomes 

unstable when 11
m

r   .  

The stability around the pair of equlibrium points 

   1
1 1m

e m
x k r


    
 

,      1 1
1 1m m

e m m
y k r

 
    
 

, 

 1m
e m

z r    can be determined with investigation of 

the properties of eigenvalues of the characteristic 

equation 

  

      (13) 

 

All three roots can be easily computed in 

Mathematica® by using function Solve, however the 

displayed result is comprehensive. In the case of Lorenz 
system (6), Sparrow has been found the critical value 

 
 

3

1
, 1

b
c b
r b

 




 

 
   , where the subcritical Hopf 

bifurcation occurs [4]. All three roots of characteristic 

equation have negative real part if r<rc and equilibrium 

points are stable. However, when r>rc, then two complex 

eigenvalues have positive real part and equilibria become 

unstable.  Such kind of stability analysis in the case of 

system (5) is too complicate. Instead of this, roots, 
obtained by solving Eq. (13) with  Mathematica® can be 

evaluated numerically and the sign of real part of each 

root can be checked separately. If this test finds two 

complex roots with positive real parts, the instability 

occurs. Thus, the computer test is proposed, which 

consists from increasing the value of parameter r in the 

range r>0, computing corresponding eigenvalues by 

solving Eq. (13) and looking for the smallest value of r, 

where two complex roots have positive real parts. In the 

region of instability, unstable periodic and chaotic 

motions, respectively, are possible. Chaotic motions are 
significantly distinguished from unstable periodic 

motions because they are disordered and completely 

unpredictable. 

Until yet, we have discussed the saturation state and 

the chaotic state, but not the steady state. According to the 

definition, the steady state of the nonlinear supply chain 

occurs if the behavior of the supply chain stays same for 

the long enough time. In other words, the system is in the 

steady state if the same pattern is repeated in the long 

enough period of time. Having known solutions of Eqs. 

(5), the trajectories of the system can be shown in the 
phase space portrait. Phase space portrait of the system in 

the steady state takes the form of closed loops. The 

system is said to be in a regular state, if the trajectory of 

the system takes a cyclic pattern, which facilitates the 

future prediction. Phase space portraits of the chaotic 

state are very sensitive on the change of initial conditions 

and  show disordered patterns so that a future prediction 

is impossible.  

Parameters m, r, k of the Lorenz-like model (5) in 

reference model of nonlinear supply chain must have 

fixed, but realistic values, because only in such a case the 

supply chain operates in normal operation conditions. 

Parameter m in Eq. (5), may be interpreted as percentage 

value. If m is fixed to have percentage value m = 15 %, 
then the retailer places orders assuming that least 15 % of 

his orders are satisfied by the distributor. This percentage 

value of course is relatively low, but it is chosen to allow 

the study of the steady state behavior in the supply chain 

model without disturbances. The parameter r means the 

rate of the information distortion at the distributor and can 

be interpreted as the percentage value in a natural way. 

When r = 30, this means that the distributor received the 

information about the order quantity from the retailer 

with 30 % distortion rate. Finally, when the value of 

parameter k is chosen to be k = ⅓, then the safety stock 
coefficient determines, that the manufacturer produces 

one third more (approximately 33  % more) than the order 

received to avoid uncertain situations. It is worth to note, 

that chosen parameter values m = 15, r = 30, k = ⅓ in the 

nonlinear supply chain reference model differ from the 

values σ = 10, r =28, b = 8/3 in the classic Lorenz 

atmospheric convection model [6]. 

Considering chosen values of parameter, we first 

compute  the critical value rc. To do this, we compute 

eigenvalues of Eq. (13) and check them, when their 

positive real parts appear. By performing the computer 

test, we obtain rc = 26.9105. Because the chosen value of 
parameter r is higher than the critical value, r=30 > 

rc=26.9105, we cannot find any stable pair of equilibrium 

points. Therefore, the saturation state in the system (5) 

without disturbances does not exist. As is mentioned 

previously, in the range r>rc both unstable periodic as 

well as chaotic solutions appear. With chosen values of 

parameters, we obtain the steady state periodic solution 

after the very short transient phase dies. The time history 

of the phenomenon is depicted in Figure 2.a and the 

corresponding phase portrait in the Figure 2.b.  Both the 

time responses as well as the phase diagrams show that 
three players of the supply chain fulfilled their objectives 

without hindering the reaching of objectives of other 

participants. Both time responses as well as phase 

portraits are computed by using the multistage homotopic 

perturbation method and drawn in figures with 

continuous line. The method is still presented in [6] and 

is compared in this paper with results of numerical 

integration of the system (5) using the Runge-Kutta 

method. Results of the numerical integration are shown in 

the Figures 2. a and 2. b with dashed curves and compare 

very well with results of the multistage homotopic 

perturbation method.   
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Time histories on Fig. 2.a show the periodic nature of 

the steady state and from corresponding plots in Fig.  2.b 

it can be seen, that all phase portraits are cyclic. Thus, the 

steady state of the supply chain is a regular state. A direct 

proof of this conclusion can be made by construction of 

the so called Poincare map [7], which in this case is 

reduced in a point. Because the claim is evident from 

figures shown, the proof is omitted, however its sketch 

can be found in [8]. 

5. States of nonlinear supply chain in the 

presence of external disturbances 

Supply chain cannot stays in the regular state, studied 

until now, for a long time. Such behavior is the 

consequence of the inevitable disturbances, which can 

affect any level of the supply chain. The time dependence 
of disturbances can be random, but to simplify the 

discussion a bit, we assume the presence of external 

seasonal (periodic) disturbances only, which can affect 

the each level of the supply chain additively in 

accordance with Eqs. (7). By using disturbances in the 

form            1 2 310cos 5 , 5cos 10 , 10cos 10d t t d t t d t t    , 

but retaining the values of parameters 15,m  30,r 

1
3

k    to be equal as in the reference model, we are 

surprised, that there exists a saturation state, which cannot 

be found in the reference model. With vanishing 

derivatives on the left hand side of Eqs. (7) and specified 

harmonic disturbances, we can find time courses of 
variables x(t), y(t) and z(t), which can annulate 

disturbances d1(t), d2(t) and d3(t) on the right hand side of 

Eqs. (7). The desired functions are computed in 

Mathematica® by applying the command Solve[{m*y-

(m+1)*x+d1==0, r*x-y-x*z+d2==0, x*y-(1-

k)*z+d3==0},{x,y,z}]. The displays of computed 

functions are comprehensive, however plotting of time 

histories is a simple task, which is shown in Figs. 3.a,b. 

From these plots it follows, that all functions x(t), y(t) and 

z(t) have nonzero DC components (their derivatives of 

course are zero), which are coordinates of the saturation 
point in the Fig. 3.c. A simple computation in 

Mathematica® , performed on obtained solutions  x(t), y(t) 

and z(t), reveals, that coordinates of the saturation point 

in the Fig. 3.c are xe=4.21029, ye=4.49435, ze=29.0757. 

As mentioned in previous section, the saturation state of 

the supply chain is dangerous, because further changes 

cannot be effectively computed, when the supply chain 

enters in this state. 

    

    

Fig. 2. Steady state of the nonlinear supply chain without external disturbances. a) Time histories of retailer order's, quantity of 
products, which can be supplied by distributor and quantity of products made by manufacturer. b) phase portraits of the steady 
state. ________  results, computed by multistage homotopic perturbation method, - - - - results, computed by Runge-Kutta method. 

 

         
                                    a)        b)      c) 

Figure 3. Saturation state of the nonlinear supply chain in the presence of disturbances. a) time histories of x(t) and y(t). 
_______ time history of variable  x(t), - - - - time history of variable y(t). b) time history of variable z(t). c) position of fixed 
(equilibrium) point in the phase space. 
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Besides the passage into the saturation state, nonlinear 

supply chain can exhibit chaotic motions in the presence 

of external disturbations. Chaotic motions in the case of 
Lorenz attractor are possible, if the system parameters 

take the characteristic values. To show the phenomenon 

of chaos in nonlinear supply chain, the values of 

parameters m=30, r=28.5 and k=⅓ are  chosen  and  

external   disturbances are    changed    to follow functions

           1 2 30.56cos 3 , 20cos 5 , 50cos 10d t t d t t d t t   in 

dependence on time. The chaotic responses of the supply 

chain are again computed by the multistage homotopic 

perturbation method and compared in time as well as in 

the phase space with results of numerical integration of 

Eqs. (7) by using Runge-Kutta method. Time histories are 
shown in Fig. 4.a and the corresponding phase portraits 

are depicted in the Fig. 4.b, respectively, where results of 

multistage homotopic perturbation method are plotted by 

continuous line and results, obtained by Runge-Kutta 

method are shown with dashed lines. The comparison of 

computed results by application of both methods reveals 

an excellent agreement also in this chaotic case. 

 6.  Conclusion 

The paper treats the modelling of the nonlinear supply 

chain, which consists from a manufacturerer, a distributor 

and a retailer by derivation of the Lorenz-like system of 

equations, which can exhibit chaos. The computer test to 

find the critical value of the parameter r, which 

determines stability behavior of the supply chain, is 

envisaged. The steady state of the supply chain without 

disturbances, which correspond to the regular state, is 

analysed and explained. Conditions for occurence of the 
saturation state in the supply chain, which is subjected to 

the periodic external disturbances, are found and the 

corresponding saturation state is effectively computed. In 

the supply chain with periodic disturbances, the chaotic 

state is also analysed. The time histories and phase 

portraits of investigated states of supply chain are 
computed by multistage homotopic perturbation method 

and compared with computations, performed by using 

Runge-Kutta method of numerical integration of 

governing differential equations. It is found, that both 

method are in an excellent agreement.     
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Figure 4. Chaotic state of nonlinear supply chain. a) time histories of supply chain variables x(t), y(t) and z(t). b) phase 
portraits of the chaotic state.  ________ results, computed by multistage homotopic perturbation method, - - - - results, 
computed by Runge-Kutta method. 

 


