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Abstract: The article reviews the know-why and the know-how of an invention based on the patented 
dissipative granular high-pressure technology. It was found that by proper selection of damping material 
and hydrostatic pressure to which material is exposed during the loading, one can match material 
maximum damping properties with the frequency or rate of the applied loading. In this way one can fully 
utilize damping characteristics of the selected material and maximize the energy absorption properties of 
a damper. Using this unique potential of the dissipative granular high-pressure technology one can build 
ultimate damping elements that surpass the existing damping elements for sever orders of magnitude.  
Applications of such damping elements include for instance supports for industrial machines to damp 
vibrations, fundaments in building constructions to reduce susceptibility to earthquake damage and 
resonance, as well as trains and railway tracks to reduce vibration during travel, and to improve passive 
car safety in road transportation. 

This article reviews phenomenological description of the time-dependent response of polymeric material 
when excited by impact- or vibrational loading needed in development of the new generation impact- 
and vibration isolation.

Key words: effect of pressure; viscoelasticity; dissipative granular materials; damping elements; 
thermoplastic polyurethane; earthquake and railway isolation; passive car safety.

Povzetek: Članek obravnava znanje izuma, ki temelji na patentirani disipativni zrnati visokotlačni 
tehnologiji. Ugotovljeno je bilo, da je z ustrezno izbiro dušilnega materiala in hidrostatičnim tlakom, 
ki mu je material izpostavljen med nakladanjem, mogoče ujemati največje lastnosti dušenja materiala 
s pogostostjo ali hitrostjo uporabljene obremenitve. Na ta način lahko v celoti izkoristimo lastnosti 
dušenja izbranega materiala in povečamo absorpcijske lastnosti lopute. Z uporabo tega edinstvenega 
potenciala disipativne zrnate visokotlačne tehnologije je mogoče zgraditi vrhunske dušilne elemente, ki 
za nekaj vrst presegajo obstoječe dušilne elemente. Uporaba takšnih blažilnih elementov vključuje na 
primer nosilce za industrijske stroje za dušenje vibracij, temelje v gradbenih konstrukcijah za zmanjšanje 
dovzetnosti za potresne poškodbe in resonanco, pa tudi vlake in železniške tire za zmanjšanje vibracij 
med potovanjem in za izboljšanje pasivne varnosti avtomobilov na cestah prevoz.

Ta članek obravnava fenomenološki opis časovno odvisnega odziva polimernega materiala, ko ga vzbudi 
udarna ali vibracijska obremenitev, potrebna pri razvoju nove generacije izolacije udarcev in vibracij.

Ključne besede: učinek tlaka; visokoelastičnost; disipativni zrnati materiali; dušilni elementi; 
termoplastični poliuretan; potresna in železniška izolacija; pasivna varnost avtomobilov.
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1. Introduction

Isolation against harmonic excitations is well under-
stood and elaborated, whereas dampers for impact and 
non-harmonic excitations, such as collision of vehicles, 
foundation for high speed trains, forging machines, and 
protection against earthquakes, is still subject of intensive 
research and development. The most promising damping 
solutions are still viscoelastic dampers, which drawback is 
that dampers with a given geometry, made from materials 
with sufficient damping properties, have insufficient stiff-
ness and vice versa. Figure 1 shows a schematic comparison 
of stiffness and damping of cylindrical elements made from 
different known materials. As seen from the diagram stiff-
ness of existing materials can differ more than 107 times, 
and their corresponding damping more than 108 times! 

These differences for typical engineering polymers 
that are used in damping applications are schematically 
shown in Fig. 2. In this case damping and stiffness may 
differ more than 1000 times.

From the two diagrams one may conclude that there 
is an engineering challenge how to overcome the short-
comings of the existing materials in order to construct 
dampers with required stiffness that will, at the same 
time, have desired energy absorption and damping 
properties. In different areas of application over the 
years many different engineering solutions have been 
developed which, however, still do not fulfil our ex-
pectations. 

This rises the scientific question if it would be pos-
sible to increase stiffness of a selected material with 
desired damping and vice versa?  The answer is pos-
itive!  

In this paper we review the know-why and the know-
how of an invention [1, 2] that is based on the so-called 
dissipative granular high-pressure technology. It was 
found that by proper selection of damping material and 
pressure to which material is exposed during the load-
ing, one can match its maximum damping properties 
with the frequency or rate of the applied loading. In 
this way one would fully utilize damping characteris-
tics of the selected material and maximize the energy 
absorption properties of the damper. Using this unique 
property of polymeric materials enabled us to design 
and build ultimate adaptive damping elements. For do-
ing this one has to utilize a patented finding [1] that 
viscoelastic granular materials with properly selected 
multimodal size-distribution exhibit fluid-like behav-
ior, while maintaining its behavior of the bulk material 
from which the granular material was made. Hence, 
such material may be used as a “pressurizing media” 
to impose inherent hydrostatic pressure on itself and 
consequently change its own damping properties.

The research-based invention utilizes knowledge 
that has been acquired over years in the field of char-
acterization and mathematical modelling of time-de-
pendent behavior of polymeric materials.  We review 
and demonstrate that by utilizing the knowledge on the 
effect of inherent hydrostatic pressure on the time- and 
frequency-dependent behaviour of polymers it become 
possible to design and build the ultimate isolation 
against impact and non-harmonic excitations in differ-
ent areas of application that surpasses existing isola-
tions by several orders of magnitude. 

In order to understand the know-why of the in-
vention one needs to understand the fundamentals of 
time-dependent behaviour and its relation to thermo-
mechanical boundary conditions to which material is 
exposed. More specifically, the interrelated effects of 
temperature and hydrostatic pressure on the material 
behaviour need to be investigated. 

2. Theoretical background

Unlike elastic materials such as metals, ceramics, 
etc., polymers exhibit a so-called time-dependent behav-
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ior, i.e, they undergo time-dependent changes in strain or 
stress under the application of external stress or strain.  
Figure 3 schematically presents comparison of material 
responses (strains) between elastic and viscoelastic ma-
terials under the application of a constant load (stress). 

     Due to the time-dependent nature of polymers, one 
can distinguish between two processes when material is 
subjected to an external load [3, 4]. These processes are 
creep and relaxation. They are distinguished by their type 
of external loading.  In case of creep the applied loading 
is stress, and in case of relaxation  the loading is strain. 
From a thermodynamic point of view, during relaxation 
material is »loaded« with a continously diminishing 
amount of energy. When all the imposed energy is con-
sumed for molecular rearrangements, the relaxation pro-
cess ceases. On the other hand, during creep, energy used 
for molecular rearrangement is continuously supplied to 
the material, and therefore a creep process effectively 
stops upon reaching the material equilibrium strain state, 
for crosslinked polymers, or failure of the material, for 
thermoplastic polymers.

Creep process 

Creep process describes a time-dependent response of 
viscoelastic material in the form of a strain, ε(t), when it 
is subjected to a constant external load in the form of a 
stress, σ_0, commonly generated by a deadweight, [3, 4].

The general relationship for an uniaxial creep process 
is given as 

which, in the case when the applied stress has the 
form of a step function σ(u)=σ_0 h(u), simplifies into

where σ_0 is the magnitude of the applied stress, 
h(u) is the Heaviside function (step function), δ(u) is 
the Dirac function (impulse function), u is an integra-

tion variable of time, and D(t) is the time-dependent 
mechanical property of viscoelastic material called 
uniaxial creep compliance,

Relaxation process 

On the other hand, relaxation process describes a 
time-dependent response of viscoelastic material in the 
form of a decaying stress, σ(t), when it is subjected to the 
constant strain ε_0, [3, 4]. The general relationship for an 
uniaxial relaxation process is

which, in the case when the applied strain has the 
form of a step function ε(u)=ε_0 h(u), simplifies into

where material function, E(t), called uniaxial relax-
ation modulus, has the form

It is important to note that uniaxial creep compli-
ance and relaxation modulus (or in general compliances 
and moduli) are not reciprocal values, i.e. E(t)≠1⁄D(t) ,  
except for the limiting values, i.e., elastic instant val-
ues and equilibrium values. The two material response 
functions, creep-compliance and relaxation modulus, 
are related through a convolution integral interrelation, 

which is mathematically an inverse problem and re-
quires special numerical techniques to be applied. 

Uniaxial creep and relaxation functions for differ-
ent types of polymers are schematically shown in Fig. 
4, where the index “g” and “e” denote the so-called  
glassy (elastic), and equilibrium value of the response 
respectively, which is typical for elastomers, thermo-
sets and partially also for semi-crystalline polymers. 
Amorphous polymers do not have equilibrium values, 
since their molecular structure allow them to creep un-
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Figure 4: a) Creep and b) relaxation behavior for different types of 
polymers
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     It is important to note that uniaxial creep compliance and relaxation modulus (or in general compliances and 
moduli) are not reciprocal values, i.e. 𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡) ≠ 1 𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡)⁄ ,  except for the limiting values, i.e., elastic instant values 
and equilibrium values. The two material response functions, creep-compliance and relaxation modulus, are 
related through a convolution integral interrelation,   
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which is mathematically an inverse problem and requires special numerical techniques to be applied.  
 
     Uniaxial creep and relaxation functions for different types of polymers are schematically shown in Fig. 4, 
where the index “g” and “e” denote the so-called  glassy (elastic), and equilibrium value of the response 
respectively, which is typical for elastomers, thermosets and partially also for semi-crystalline polymers. 
Amorphous polymers do not have equilibrium values, since their molecular structure allow them to creep until 
their mechanical failure or to relax until the process of the molecular rearrangement stops.  
 

Figure 4: a) Creep and b) relaxation behavior for different types of polymers 
 
 

 
 
 
Material functions and constitutive description of time-depndent materials 
     Mechanical properties of time-dependent materials are also rate- and frequency-dependent, i.e., material 
response depends on the rate and frequency of the applied stress or strain.  In general, viscoelastic behavior of 
solid polymer is determined with 21 material functions listed in Table 1 [3, 4]. They differ by type and mode of 
loading. Seven of them are obtained in the static mode and the remaining 14 in the dynamic mode of loading.  
 
It is important to stress that Poisson’s ration need to be determined from relaxation experiments and NOT from 
creep experiments, where deformations are changing with time.  
 

Table 1: Time-dependnt material functions 
Type of loading 
 
Mode of loading 

Uniaxial Shear 
Bulk 
(volumetric) 

Poisson's 
ratio 

Static 
Relaxation 𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡) 𝐺𝐺𝐺𝐺(𝑡𝑡𝑡𝑡) 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡) 𝜗𝜗𝜗𝜗(𝑡𝑡𝑡𝑡) 
Creep 𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) 𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡)  

Dynamic 
Relaxation 
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Out-of-phase 𝐷𝐷𝐷𝐷′′(𝜔𝜔𝜔𝜔) 𝐽𝐽𝐽𝐽′′(𝜔𝜔𝜔𝜔) 𝐵𝐵𝐵𝐵′′(𝜔𝜔𝜔𝜔)  
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til their mechanical failure or to relax until the process 
of the molecular rearrangement stops. 

Material functions and constitutive description of 
time-depndent materials

     Mechanical properties of time-dependent ma-
terials are also rate- and frequency-dependent, i.e., 
material response depends on the rate and frequency 
of the applied stress or strain.  In general, viscoelastic 
behavior of solid polymer is determined with 21 ma-
terial functions listed in Table 1 [3, 4]. They differ by 
type and mode of loading. Seven of them are obtained 
in the static mode and the remaining 14 in the dynamic 
mode of loading. 

It is important to stress that Poisson’s ration need 
to be determined from relaxation experiments and 
NOT from creep experiments, where deformations are 
changing with time. 

Within the framework of linear theory of viscoelas-
ticity, material functions are interrelated in the Laplace 
space. Thus, it is sufficient to determine (measure) 
only two material functions in order to calculate the 
remaining 19 material functions [3]. Unfortunately, 
the interconversion procedures need to be done numer-
ically. Table 2 presents the relations between material 
functions in the Laplace space, denoted with s.

    From the theory of elasticity it is known that 
shear and bulk material functions provide complete 
description for the material since stress-strain fields 
for solids in general, i.e. σij and εij, can be expressed 

through the sum of a deviatoric part which refers to 
changes of shape of a metarial, and a dilatometric part 
which refers to its changes in volume.  The same is true 
for time-dependent behavior, however, their behavior 
should be presented in an integral formulation,

where u represents an integral variable of time, G(t) 
and K(t) are shear and bulk relaxation moduli, and J(t) 
and B(t) are shear and bulk creep compliances, respec-
tively. Since  time-dependent changes in bulk proper-
ties are small (changes in time are from 2 to 4 times) in 
comparison to time-dependent changes in shear prop-
erties, which can change in time for orders of mag-
nitude (from 100 to 10000 times) [3-7]. Therefore, 
for many engineering applications one may consider 
that the time- or frequency/rate-dependent behavior 
of polymers and products made from polymeric ma-
terials, are primarily governed by shear material func-
tions. Therefore, shear material functions will be used 
to explain the effect of temperature and the effect of 
pressure on the mechanical behavior of polymers.

2.1. Effect of temperature

     The effect of temperature on the time-dependent 
behavior of polymers may be described by a so-called 
free volume concept. This concept is stating that be-
havior of polymers, regardless of the type or mode of 
loading, is solely governed by the rate of molecular 
rearrangements accuring inside the material, whereas 
the rate depends on the instantly available free volume 
to allow the rearrangements of the polymer chains. 

     By increasing the temperature, segmental mobil-
ity or molecular rearrangements in a polymer increases 
[5-7].  This so called micro-Brownian thermal motion 
causes and increase the free volume, i.e., an increas 
of available space for relative motion of molecules 
under the application of loading, and thereby acceler-
ates creep or relaxation processes. On a macroscale, 
this phenomenon can be observed as horizontal shift 
of time-dependent mechanical properties to shorter 
times along the logarithmic time-axis, as schematical-
ly shown  in Fig. 5  for the case of crosslinked materi-

Table 1: Time-dependnt material functions

Table 2: Relations between material functions in Laplace space

Figure 5: Effect of temperature on a) shear creep compliance and b) 
shear relaxation modulus
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Type of loading 
 
Mode of loading 

Uniaxial Shear 
Bulk 
(volumetric) 

Poisson's 
ratio 

Static 
Relaxation 𝐸𝐸𝐸𝐸(𝑡𝑡𝑡𝑡) 𝐺𝐺𝐺𝐺(𝑡𝑡𝑡𝑡) 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡) 𝜗𝜗𝜗𝜗(𝑡𝑡𝑡𝑡) 
Creep 𝐷𝐷𝐷𝐷(𝑡𝑡𝑡𝑡) 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) 𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡)  

Dynamic 
Relaxation 

In-phase 𝐸𝐸𝐸𝐸′(𝜔𝜔𝜔𝜔) 𝐺𝐺𝐺𝐺′(𝜔𝜔𝜔𝜔) 𝐾𝐾𝐾𝐾′(𝜔𝜔𝜔𝜔) 𝜗𝜗𝜗𝜗′(𝜔𝜔𝜔𝜔) 
Out-of-phase 𝐸𝐸𝐸𝐸′′(𝜔𝜔𝜔𝜔) 𝐺𝐺𝐺𝐺′′(𝜔𝜔𝜔𝜔) 𝐾𝐾𝐾𝐾′′(𝜔𝜔𝜔𝜔) 𝜗𝜗𝜗𝜗′′(𝜔𝜔𝜔𝜔) 

Creep 
In-phase 𝐷𝐷𝐷𝐷′(𝜔𝜔𝜔𝜔) 𝐽𝐽𝐽𝐽′(𝜔𝜔𝜔𝜔) 𝐵𝐵𝐵𝐵′(𝜔𝜔𝜔𝜔)  
Out-of-phase 𝐷𝐷𝐷𝐷′′(𝜔𝜔𝜔𝜔) 𝐽𝐽𝐽𝐽′′(𝜔𝜔𝜔𝜔) 𝐵𝐵𝐵𝐵′′(𝜔𝜔𝜔𝜔)  
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     Within the framework of linear theory of viscoelasticity, material functions are interrelated in the Laplace 
space. Thus, it is sufficient to determine (measure) only two material functions in order to calculate the remaining 
19 material functions [3]. Unfortunately, the interconversion procedures need to be done numerically. Table 2 
presents the relations between material functions in the Laplace space, denoted with 𝑠𝑠𝑠𝑠. 
 

Table 2: Relations between material functions in Laplace space 
 

Materi
al 
functio
n 

Expressed as a function of 

𝐆𝐆𝐆𝐆 and 𝐄𝐄𝐄𝐄 𝐆𝐆𝐆𝐆 and 𝛝𝛝𝛝𝛝 𝐄𝐄𝐄𝐄 and 𝛝𝛝𝛝𝛝 𝐊𝐊𝐊𝐊 and 𝐄𝐄𝐄𝐄 𝐊𝐊𝐊𝐊 and 𝛝𝛝𝛝𝛝 𝐊𝐊𝐊𝐊 and 𝐆𝐆𝐆𝐆 

𝐊𝐊𝐊𝐊 
𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)

9𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠) − 3𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)
 
2𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)(1 + ϑ(s))

3(1 − 2ϑ(s))
 

𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)
3(1 − 2ϑ(s))

 - - - 

𝐆𝐆𝐆𝐆 - - 
𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)

2(1 + ϑ(s))
 

3𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠)𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)
9𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠) − 𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)

 
3𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠)(1 − 2ϑ(s))

2(1 + ϑ(s))
 - 

𝐄𝐄𝐄𝐄 - 
2𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)(1
+ ϑ(s)) 

- - 
3𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠)(1
− 2ϑ(s)) 

9𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠)𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)
3𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠) + 𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)

 

𝛝𝛝𝛝𝛝 
𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)

2𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)
− 1 - - 

1
2
−

𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)
6𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠)

 - 
3𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠) − 2𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)
6𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠) + 2𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)

 

       
 𝐉𝐉𝐉𝐉 and 𝐃𝐃𝐃𝐃 𝐉𝐉𝐉𝐉 and 𝛝𝛝𝛝𝛝 𝐃𝐃𝐃𝐃 and 𝛝𝛝𝛝𝛝 𝐁𝐁𝐁𝐁 and 𝐃𝐃𝐃𝐃 𝐁𝐁𝐁𝐁 and 𝛝𝛝𝛝𝛝 𝐁𝐁𝐁𝐁 and 𝐉𝐉𝐉𝐉 

𝐁𝐁𝐁𝐁 
9𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)
− 3𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠) 

3𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠)(1 − 2ϑ(s))
2(1 + ϑ(s))

 
3𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)(1
− 2ϑ(s)) 

- - - 

𝐉𝐉𝐉𝐉 - - 
2𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)(1
+ ϑ(s)) 

3𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)

−
𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)

3
 

3𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)(1 + 2ϑ(s))
3(1 − 2ϑ(s))

 - 

𝐃𝐃𝐃𝐃 - 
𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠)

2(1 + ϑ(s))
 - - 

𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)
3(1 − 2ϑ(s))

 
𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)

9
−
𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠)

3
 

𝛝𝛝𝛝𝛝 
𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠)

2𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)
− 1 - - 

1
2
−

𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)
6𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)

 - 
3𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠) − 2𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)
6𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠) + 2𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)

 

 
 
     From the theory of elasticity it is known that shear and bulk material functions provide complete description 
for the material since stress-strain fields for solids in general, i.e. 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, can be expressed through the sum of 
a deviatoric part which refers to changes of shape of a metarial, and a dilatometric part which refers to its changes 
in volume.  The same is true for time-dependent behavior, however, their behavior should be presented in an 
integral formulation, 
 

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) = 2� 𝐺𝐺𝐺𝐺(𝑡𝑡𝑡𝑡 − 𝑢𝑢𝑢𝑢)
𝑑𝑑𝑑𝑑𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢)
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢

𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑡𝑡𝑡𝑡

0
+ 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 � 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡 − 𝑢𝑢𝑢𝑢)

𝑑𝑑𝑑𝑑𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑢𝑢𝑢𝑢)
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢

𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑡𝑡𝑡𝑡

0
,       and (8) 

 

𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) =
1
2
� 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡 − 𝑢𝑢𝑢𝑢)

𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢)
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢

𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑡𝑡𝑡𝑡

0
+

1
3
𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 � 𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡 − 𝑢𝑢𝑢𝑢)

𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑢𝑢𝑢𝑢)
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢

𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑡𝑡𝑡𝑡

0
, (9) 

 
where 𝑢𝑢𝑢𝑢 represents an integral variable of time, 𝐺𝐺𝐺𝐺(𝑡𝑡𝑡𝑡) and 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡) are shear and bulk relaxation moduli, and 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) and 
𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡) are shear and bulk creep compliances, respectively. Since  time-dependent changes in bulk properties are 
small (changes in time are from 2 to 4 times) in comparison to time-dependent changes in shear properties, which 
can change in time for orders of magnitude (from 100 to 10000 times) [3-7]. Therefore, for many engineering 
applications one may consider that the time- or frequency/rate-dependent behavior of polymers and products made 
from polymeric materials, are primarily governed by shear material functions. Therefore, shear material functions 
will be used to explain the effect of temperature and the effect of pressure on the mechanical behavior of polymers. 
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2.1 Effect of temperature 

 
     The effect of temperature on the time-dependent behavior of polymers may be described by a so-called free 
volume concept. This concept is stating that behavior of polymers, regardless of the type or mode of loading, is 
solely governed by the rate of molecular rearrangements accuring inside the material, whereas the rate depends 
on the instantly available free volume to allow the rearrangements of the polymer chains.  
 
     By increasing the temperature, segmental mobility or molecular rearrangements in a polymer increases [5-7].  
This so called micro-Brownian thermal motion causes and increase the free volume, i.e., an increas of available 
space for relative motion of molecules under the application of loading, and thereby accelerates creep or relaxation 
processes. On a macroscale, this phenomenon can be observed as horizontal shift of time-dependent mechanical 
properties to shorter times along the logarithmic time-axis, as schematically shown  in Fig. 5  for the case of 
crosslinked materials. In both cases, for shear creep compliance, Fig. 5a,  and for shear relaxation modulus, Fig. 
5b, an increas of temperature from 𝑇𝑇𝑇𝑇1 to  𝑇𝑇𝑇𝑇2 will cause a parallel shift of the response function towards shorter 
times.  
 

Figure 5: Effect of temperature on a) shear creep compliance and b) shear relaxation modulus 
 

 
 
 
     From Fig. 5 one observes that material property at a given time strongly depends on material temperature. 
Teherefore, one cannot talk about time-dependent behavior of polymeric materials without stating the temperature 
at which this behavior was observed!  
 
Time-temperature superposition 
     As observed in Fig. 5, by increasing temperature, one accelerates creep or relaxation process in viscoelastic 
material. This phenomenon may be utilized to predict long term material behavior at lower temperatures by 
performing experiments at higher temperature. Hence, one can reduce the time for measuring the material 
functions by utilizing the so-called time-temperature superposition principle. Thus, the time-temperature 
superposition principle may be used to extend the time scale beyond the range that can be observed in a single 
experiment. It enables generation of master curves, i.e., viscoelastic material functions, by moving isothermal 
segments of material functions, measured at different temperatures, along the logarithmic time-axis in respect to 
a selected segment at the reference temperature, Tref [6].  The shift of each segment in respect to the reference 
segment is determined by a shift factor, log aT, or in general by a thermal shift-function, log aT (T), which presents 
the ffect of temperature on the mechanical behavior of polymers, Fig. 6. 

 
Figure 6: a) generation of master curve at 𝑇𝑇𝑇𝑇ref = 𝑇𝑇𝑇𝑇3 for a case of shear relaxation modulus and 

b) representation of shift factors as function of temperature 
 
 

 6 

     Within the framework of linear theory of viscoelasticity, material functions are interrelated in the Laplace 
space. Thus, it is sufficient to determine (measure) only two material functions in order to calculate the remaining 
19 material functions [3]. Unfortunately, the interconversion procedures need to be done numerically. Table 2 
presents the relations between material functions in the Laplace space, denoted with 𝑠𝑠𝑠𝑠. 
 

Table 2: Relations between material functions in Laplace space 
 

Materi
al 
functio
n 

Expressed as a function of 

𝐆𝐆𝐆𝐆 and 𝐄𝐄𝐄𝐄 𝐆𝐆𝐆𝐆 and 𝛝𝛝𝛝𝛝 𝐄𝐄𝐄𝐄 and 𝛝𝛝𝛝𝛝 𝐊𝐊𝐊𝐊 and 𝐄𝐄𝐄𝐄 𝐊𝐊𝐊𝐊 and 𝛝𝛝𝛝𝛝 𝐊𝐊𝐊𝐊 and 𝐆𝐆𝐆𝐆 

𝐊𝐊𝐊𝐊 
𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)

9𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠) − 3𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)
 
2𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)(1 + ϑ(s))

3(1 − 2ϑ(s))
 

𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)
3(1 − 2ϑ(s))

 - - - 

𝐆𝐆𝐆𝐆 - - 
𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)

2(1 + ϑ(s))
 

3𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠)𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)
9𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠) − 𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)

 
3𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠)(1 − 2ϑ(s))

2(1 + ϑ(s))
 - 

𝐄𝐄𝐄𝐄 - 
2𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)(1
+ ϑ(s)) 

- - 
3𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠)(1
− 2ϑ(s)) 

9𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠)𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)
3𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠) + 𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)

 

𝛝𝛝𝛝𝛝 
𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)

2𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)
− 1 - - 

1
2
−

𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠)
6𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠)

 - 
3𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠) − 2𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)
6𝐾𝐾𝐾𝐾(𝑠𝑠𝑠𝑠) + 2𝐺𝐺𝐺𝐺(𝑠𝑠𝑠𝑠)

 

       
 𝐉𝐉𝐉𝐉 and 𝐃𝐃𝐃𝐃 𝐉𝐉𝐉𝐉 and 𝛝𝛝𝛝𝛝 𝐃𝐃𝐃𝐃 and 𝛝𝛝𝛝𝛝 𝐁𝐁𝐁𝐁 and 𝐃𝐃𝐃𝐃 𝐁𝐁𝐁𝐁 and 𝛝𝛝𝛝𝛝 𝐁𝐁𝐁𝐁 and 𝐉𝐉𝐉𝐉 

𝐁𝐁𝐁𝐁 
9𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)
− 3𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠) 

3𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠)(1 − 2ϑ(s))
2(1 + ϑ(s))

 
3𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)(1
− 2ϑ(s)) 

- - - 

𝐉𝐉𝐉𝐉 - - 
2𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)(1
+ ϑ(s)) 

3𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)

−
𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)

3
 

3𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)(1 + 2ϑ(s))
3(1 − 2ϑ(s))

 - 

𝐃𝐃𝐃𝐃 - 
𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠)

2(1 + ϑ(s))
 - - 

𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)
3(1 − 2ϑ(s))

 
𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)

9
−
𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠)

3
 

𝛝𝛝𝛝𝛝 
𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠)

2𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)
− 1 - - 

1
2
−

𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)
6𝐷𝐷𝐷𝐷(𝑠𝑠𝑠𝑠)

 - 
3𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠) − 2𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)
6𝐽𝐽𝐽𝐽(𝑠𝑠𝑠𝑠) + 2𝐵𝐵𝐵𝐵(𝑠𝑠𝑠𝑠)

 

 
 
     From the theory of elasticity it is known that shear and bulk material functions provide complete description 
for the material since stress-strain fields for solids in general, i.e. 𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, can be expressed through the sum of 
a deviatoric part which refers to changes of shape of a metarial, and a dilatometric part which refers to its changes 
in volume.  The same is true for time-dependent behavior, however, their behavior should be presented in an 
integral formulation, 
 

𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) = 2� 𝐺𝐺𝐺𝐺(𝑡𝑡𝑡𝑡 − 𝑢𝑢𝑢𝑢)
𝑑𝑑𝑑𝑑𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢)
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢

𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑡𝑡𝑡𝑡

0
+ 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 � 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡 − 𝑢𝑢𝑢𝑢)

𝑑𝑑𝑑𝑑𝜀𝜀𝜀𝜀𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑢𝑢𝑢𝑢)
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢

𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑡𝑡𝑡𝑡

0
,       and (8) 

 

𝜀𝜀𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) =
1
2
� 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡 − 𝑢𝑢𝑢𝑢)

𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑢𝑢𝑢𝑢)
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢

𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑡𝑡𝑡𝑡

0
+

1
3
𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 � 𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡 − 𝑢𝑢𝑢𝑢)

𝑑𝑑𝑑𝑑𝜎𝜎𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑢𝑢𝑢𝑢)
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢

𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢
𝑡𝑡𝑡𝑡

0
, (9) 

 
where 𝑢𝑢𝑢𝑢 represents an integral variable of time, 𝐺𝐺𝐺𝐺(𝑡𝑡𝑡𝑡) and 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡) are shear and bulk relaxation moduli, and 𝐽𝐽𝐽𝐽(𝑡𝑡𝑡𝑡) and 
𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡) are shear and bulk creep compliances, respectively. Since  time-dependent changes in bulk properties are 
small (changes in time are from 2 to 4 times) in comparison to time-dependent changes in shear properties, which 
can change in time for orders of magnitude (from 100 to 10000 times) [3-7]. Therefore, for many engineering 
applications one may consider that the time- or frequency/rate-dependent behavior of polymers and products made 
from polymeric materials, are primarily governed by shear material functions. Therefore, shear material functions 
will be used to explain the effect of temperature and the effect of pressure on the mechanical behavior of polymers. 
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als. In both cases, for shear creep compliance, Fig. 5a,  
and for shear relaxation modulus, Fig. 5b, an increas of 
temperature from T_1 to  T_2 will cause a parallel shift 
of the response function towards shorter times. 

From Fig. 5 one observes that material property at 
a given time strongly depends on material temperature. 
Teherefore, one cannot talk about time-dependent be-
havior of polymeric materials without stating the tem-
perature at which this behavior was observed!

Figure 6a shows curve segments of the mechanical 
behavior measured at different temperatures T1 through  
T5, and the master-curve for the reference temperature 
T3 obtained from horizontal shifting. Figure 6b shows 
the corresponding shift factors as function of tempera-
ture. The function log aT (T) is often called the thermal 
shift-function.   According to the existing knowledge, 
the time-temperature superposition may be applied for 
thermorheological simple materials. These are primar-
ily single-phase or single transition homopolymers and 
random copolymers. Thermorheological simplicity re-
quires that all respondance times, i.e. relaxation and 
retardation times depend equally on temperature for 
which one can express thermal shift-functions [6], as

or in logarithmic scale,

There are many theories used for modeling the ef-
fect of temperature on the time-dependent behavior of 
polymers [6], however the most well known model was 
proposed by Williams, Landel and Ferry in 1955 [8], 
known as the WLF model,

where c1
0, c2

0, and B are material constants, and f0 
and αf  are the fractional free volume and the corre-
sponding volumetric thermal expansion coefficient, re-
spectively, all determined at the reference temperature 
T0.

The shifting is the »weakest step« of time/tempera-
ture–, and time/pressure– (discussed in continuation) 

superposition procedure. In the past shifting was per-
formed »manually«. Recently this problem has been 
resolved  by our team [10]. We have developed the 
closed form mathematical methodology for performing 
the time-temperature and/or time-pressure superposi-
tion, called CFS-algorithm, which completely removes 
issues related to »manual« shifting procedure. CFS 
methodology recently became the new ISO 18437-
6:2017 standard .

The proposed mathematical formulation of the 
shifting procedure takes into account that material 
functions measured at two different temperatures rep-
resent the material behavior at two different thermody-
namic states, which differ in the corresponding Gibbs 
free energy [11] by

where W denotes Gibbs free energy, S is the internal 
entropy of the material, while T0 and Tk  represent two 
selected equilibrium thermodynamic states at which 
the corresponding segments of the material function 
have been measured. The rate at which mechanical en-
ergy is absorbed per unit volume of a viscoelastic ma-
terial at a given boundary condition Tk is equal to the 
stress power, i.e. the rate at which work is performed. 
The stress power at time t is defined as

The absorbed mechanical energy causes material in-
herent structural (molecular) rearrangements during the 
relaxation or creep process. Thus, any two segments of 
the material function, measured at the reference state T0, 
and any other selected state Tk, that need to be superim-
posed (shifted) into a master curve should have the same 
energy release rate at all points of the superimposing in-
terval. This criterion may be expressed as

Equation (15) is fulfilled when the overlapping area 
H between two segments is equal to zero, as shown in 
Fig. 7.

Figure 6: a) generation of master curve at Tref=T3 for a case of shear 
relaxation modulus and b) representation of shift factors as function 
of temperature

Figure 7: Schematics of the CFS procedure for an example of shear 
relaxation modulus
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𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇)
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇0) ,   𝑖𝑖𝑖𝑖 = 1, 2, 3, … (10) 

or in logarithmic scale, 
 

log aT (T) = log ti(T) − log ti(T0) ,   i = 1, 2, 3, … (11) 
 
There are many theories used for modeling the effect of temperature on the time-dependent behavior of polymers 
[6], however the most well known model was proposed by Williams, Landel and Ferry in 1955 [8], known as the 
WLF model,  

log 𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇(𝑇𝑇𝑇𝑇) = −
(𝐵𝐵𝐵𝐵 2,303𝑓𝑓𝑓𝑓0⁄ )(𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇0)

𝑓𝑓𝑓𝑓0 𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓⁄ + 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇0
= −

𝑐𝑐𝑐𝑐10(𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇0)
𝑐𝑐𝑐𝑐20 + 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇0

= −
𝑐𝑐𝑐𝑐10∆𝑇𝑇𝑇𝑇
𝑐𝑐𝑐𝑐20 + ∆𝑇𝑇𝑇𝑇

 (12) 

 
where 𝑐𝑐𝑐𝑐10, 𝑐𝑐𝑐𝑐20, and B are material constants, and 𝑓𝑓𝑓𝑓0 and 𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓  are the fractional free volume and the corresponding 
volumetric thermal expansion coefficient, respectively, all determined at the reference temperature 𝑇𝑇𝑇𝑇0. 
 
     The shifting is the »weakest step« of time/temperature–, and time/pressure– (discussed in continuation) 
superposition procedure. In the past shifting was performed »manually«. Recently this problem has been resolved  
by our team [10]. We have developed the closed form mathematical methodology for performing the time-
temperature and/or time-pressure superposition, called CFS-algorithm, which completely removes issues related 
to »manual« shifting procedure. CFS methodology recently became the new ISO 18437-6:2017 standard1. 
 
    The proposed mathematical formulation of the shifting procedure takes into account that material functions 
measured at two different temperatures represent the material behavior at two different thermodynamic states, 
which differ in the corresponding Gibbs free energy [11] by 
 

∆𝑊𝑊𝑊𝑊 = � 𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘

𝑇𝑇𝑇𝑇0
, (13) 

 
1 (https://www.iso.org/obp/ui/#iso:std:iso:18437:-6:ed-1:v1:en) 
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where 𝑊𝑊𝑊𝑊  denotes Gibbs free energy, 𝑆𝑆𝑆𝑆 is the internal entropy of the material, while 𝑇𝑇𝑇𝑇0  and 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘  represent two 
selected equilibrium thermodynamic states at which the corresponding segments of the material function have 
been measured. The rate at which mechanical energy is absorbed per unit volume of a viscoelastic material at a 
given boundary condition 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 is equal to the stress power, i.e. the rate at which work is performed. The stress 
power at time 𝑡𝑡𝑡𝑡 is defined as 
 

𝑑𝑑𝑑𝑑𝑊𝑊𝑊𝑊(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘)
𝑑𝑑𝑑𝑑𝜀𝜀𝜀𝜀(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

. (14) 

 
     The absorbed mechanical energy causes material inherent structural (molecular) rearrangements during the 
relaxation or creep process. Thus, any two segments of the material function, measured at the reference state 𝑇𝑇𝑇𝑇0, 
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     Figure 6a shows curve segments of the mechanical behavior measured at different temperatures 𝑇𝑇𝑇𝑇1 through  
𝑇𝑇𝑇𝑇5, and the master-curve for the reference temperature 𝑇𝑇𝑇𝑇3 obtained from horizontal shifting. Figure 6b shows the 
corresponding shift factors as function of temperature. The function log 𝑎𝑎𝑎𝑎T(𝑇𝑇𝑇𝑇) is often called the thermal shift-
function.   According to the existing knowledge, the time-temperature superposition may be applied for 
thermorheological simple materials. These are primarily single-phase or single transition homopolymers and 
random copolymers. Thermorheological simplicity requires that all respondance times, i.e. relaxation and 
retardation times depend equally on temperature for which one can express thermal shift-functions [6], as 
 

𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇(𝑇𝑇𝑇𝑇) =
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇)
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖(𝑇𝑇𝑇𝑇0) ,   𝑖𝑖𝑖𝑖 = 1, 2, 3, … (10) 

or in logarithmic scale, 
 

log aT (T) = log ti(T) − log ti(T0) ,   i = 1, 2, 3, … (11) 
 
There are many theories used for modeling the effect of temperature on the time-dependent behavior of polymers 
[6], however the most well known model was proposed by Williams, Landel and Ferry in 1955 [8], known as the 
WLF model,  

log 𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇(𝑇𝑇𝑇𝑇) = −
(𝐵𝐵𝐵𝐵 2,303𝑓𝑓𝑓𝑓0⁄ )(𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇0)

𝑓𝑓𝑓𝑓0 𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓⁄ + 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇0
= −

𝑐𝑐𝑐𝑐10(𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇0)
𝑐𝑐𝑐𝑐20 + 𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇0

= −
𝑐𝑐𝑐𝑐10∆𝑇𝑇𝑇𝑇
𝑐𝑐𝑐𝑐20 + ∆𝑇𝑇𝑇𝑇

 (12) 

 
where 𝑐𝑐𝑐𝑐10, 𝑐𝑐𝑐𝑐20, and B are material constants, and 𝑓𝑓𝑓𝑓0 and 𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓  are the fractional free volume and the corresponding 
volumetric thermal expansion coefficient, respectively, all determined at the reference temperature 𝑇𝑇𝑇𝑇0. 
 
     The shifting is the »weakest step« of time/temperature–, and time/pressure– (discussed in continuation) 
superposition procedure. In the past shifting was performed »manually«. Recently this problem has been resolved  
by our team [10]. We have developed the closed form mathematical methodology for performing the time-
temperature and/or time-pressure superposition, called CFS-algorithm, which completely removes issues related 
to »manual« shifting procedure. CFS methodology recently became the new ISO 18437-6:2017 standard1. 
 
    The proposed mathematical formulation of the shifting procedure takes into account that material functions 
measured at two different temperatures represent the material behavior at two different thermodynamic states, 
which differ in the corresponding Gibbs free energy [11] by 
 

∆𝑊𝑊𝑊𝑊 = � 𝑆𝑆𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘

𝑇𝑇𝑇𝑇0
, (13) 

 
1 (https://www.iso.org/obp/ui/#iso:std:iso:18437:-6:ed-1:v1:en) 
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This yields to the closed form equation for the shift 
factor

where

For further details, see Gergesova et al. [10] and the 
new ISO 18437-6:2017 standard.

2.2 Effect of pressure 

Hydrostatic pressure can be presented as a stress load-
ing, since pressure is essentially a 3D stress, i.e.,  p=σkk.  
Pressure affects polymers in the solid state as well as in 
the molten state. When a polymeric material is pressurized, 
and simultaneously exposed to an external mechanical ex-
citation of strain or stress, not only the local movement 
of molecules is constrained, but also their relative motion 
to each other is hindered. Consequently, molecular rear-
rangements enforced by external loading are slowed down, 
which on the macroscale is observed as a slow-down in the 
creep and relaxation processes. Hence, hydrostatic pres-
sure causes changes in the macroscopic time-dependency 
of polymers. The effect of pressure on creep and relaxation 
process is demonstrated in Fig 8.  As shown, higher pres-
sure,  p2>p1,  shifts the material properties to longer times, 
which indicates that the applied pressure affects all molec-
ular processes equally. Hence, increased pressure does not 
change the shape of the response functions but moves them 
in parallel along the logarithmic time-axis. 

Suppose that the shaded areas in Fig 8 indicate a ma-
terial lifetime. Considering that pressure shifts creep and 
relaxation response functions to longer times one may 
conclude that by exposing material to high enough pres-
sure its glassy state properties may extend the lifetime of 
a product.

On the macro scale an increase of pressure to which 
material is exposed has similar effect on material me-
chanical properties as a decrease in temperature.  In 
both cases we observe “shifting” of response functions 
along the logarithmic time scale. Hence, similar to the 
time-temperature superposition, we may talk about the 
time-pressure superposition principle. However, they are 

governed by different processes on the molecular scale. A 
temperature change causes a change in the average kinet-
ic energy of polymeric molecules, while a change in pres-
sure does not change the energy state of the molecules but 
limits the available space for local molecular movements.

Time-pressure superposition

The time-pressure superposition principle allows 
shifting of response function segments, measured at 
different isobaric conditions, into a single “master-
curve” that extends over a time scale beyond what 
can be normally measured in a real-time experiment 
at reference room conditions. It has to be stressed that 
time-pressure superposition principle may be applied 
only for piezo-rheologically simple materials. These 
are materials where all molecular groups equally re-
spond to the applied pressure. Time-pressure superpo-
sition is (still) not sufficiently investigated, therefore 
it is not clear if it is walid for multi-phase materials, 
such as block- and graft- copolymers, hybrid materials, 
polymers blends, and bituminous materials [4-6].

On the macro scale, the time-pressure superposition 
works similarly as the time-temperature superposition. 
Experiments are performed at different pressures while 
maintaining the temperature constant. Measured seg-
ments of relatively short times at different pressures al-
low construction of the so-called master-curve, which 
defines behavior of a material at selected reference pres-
sure and temperature conditions, as shown in Figure 9a.  
For each particular segment the amount of shifting re-
quired to construct the mastercurve is specified with the 
shift factor a_pi. The sign of the shift factor for a par-
ticular pressure pi is determined by the shift direction of 
the segment relative to the reference pressure (pi=pref)  at 
which the mastercurve is constructed.  Shift factors cor-
responding to higher pressures (relative to the reference 
pressure) are positive, since they move the mastercurve 
to longer times. In addition, one obtains the interrela-
tion between the applied pressure and the corresponding 
shift factors, as demonstrated in figure 9b. 

Shifting of the measured segments should be pere-
formed with the standardized CFS algorithm  (ISO 
18437-6:2017) proposed by Gergesova et al. [10].

Figure 8: Shift of the creep compliance (left) and relaxation modu-
lus (right) towards longer times under applied pressure. Schematics 
presents behavior of crosslinked elastomers.

Figure 9: a) Segments of shear relaxation modulus measured at dif-
ferent pressures and the mastercurve composed by shifting the seg-
ments for the reference pressure p3; b) shift factors ap in dependence 
on pressure
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where 𝑊𝑊𝑊𝑊  denotes Gibbs free energy, 𝑆𝑆𝑆𝑆 is the internal entropy of the material, while 𝑇𝑇𝑇𝑇0  and 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘  represent two 
selected equilibrium thermodynamic states at which the corresponding segments of the material function have 
been measured. The rate at which mechanical energy is absorbed per unit volume of a viscoelastic material at a 
given boundary condition 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 is equal to the stress power, i.e. the rate at which work is performed. The stress 
power at time 𝑡𝑡𝑡𝑡 is defined as 
 

𝑑𝑑𝑑𝑑𝑊𝑊𝑊𝑊(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘)𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 𝜎𝜎𝜎𝜎(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘)
𝑑𝑑𝑑𝑑𝜀𝜀𝜀𝜀(𝑡𝑡𝑡𝑡)
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡

. (14) 

 
     The absorbed mechanical energy causes material inherent structural (molecular) rearrangements during the 
relaxation or creep process. Thus, any two segments of the material function, measured at the reference state 𝑇𝑇𝑇𝑇0, 
and any other selected state 𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘, that need to be superimposed (shifted) into a master curve should have the same 
energy release rate at all points of the superimposing interval. This criterion may be expressed as 
 

𝑑𝑑𝑑𝑑𝑊𝑊𝑊𝑊(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑜𝑜𝑜𝑜)
𝑑𝑑𝑑𝑑 log 𝑡𝑡𝑡𝑡

�
𝑡𝑡𝑡𝑡=𝑡𝑡𝑡𝑡𝑗𝑗𝑗𝑗

=
𝑑𝑑𝑑𝑑𝑊𝑊𝑊𝑊(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘)
𝑑𝑑𝑑𝑑 log 𝑡𝑡𝑡𝑡

�
𝑡𝑡𝑡𝑡=𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘

. (15) 

 
     Equation (15) is fulfilled when the overlapping area H between two segments is equal to zero, as shown in 
Fig. 7. 
 

Figure 7: Schematics of the CFS procedure for an example of shear relaxation modulus 
 

 
 
     This yields to the closed form equation for the shift factor 
 

log 𝑎𝑎𝑎𝑎𝑇𝑇𝑇𝑇𝑘𝑘𝑘𝑘 =
∑ �

log 𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘,𝑖𝑖𝑖𝑖+1 + log 𝑡𝑡𝑡𝑡𝑘𝑘𝑘𝑘,𝑖𝑖𝑖𝑖
2 ∙ �log𝐺𝐺𝐺𝐺𝑘𝑘𝑘𝑘,𝑖𝑖𝑖𝑖+1 − log𝐺𝐺𝐺𝐺𝑘𝑘𝑘𝑘,𝑖𝑖𝑖𝑖��𝑈𝑈𝑈𝑈−1

𝑖𝑖𝑖𝑖=1 − 𝐴𝐴𝐴𝐴0
log𝐺𝐺𝐺𝐺0,𝑁𝑁𝑁𝑁1 − log𝐺𝐺𝐺𝐺0,1

, (16) 

 
where 

𝐴𝐴𝐴𝐴0 = �
log 𝑡𝑡𝑡𝑡0,𝑖𝑖𝑖𝑖 + log 𝑡𝑡𝑡𝑡0,𝑖𝑖𝑖𝑖+1

2
∙ �log𝐺𝐺𝐺𝐺0,𝑖𝑖𝑖𝑖+1 − log𝐺𝐺𝐺𝐺0,𝑖𝑖𝑖𝑖�

𝑁𝑁𝑁𝑁1−1

𝑖𝑖𝑖𝑖=1

. (17) 

 
     For further details, see Gergesova et al. [10] and the new ISO 18437-6:2017 standard. 
 
2.2 Effect of pressure 
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      Hydrostatic pressure can be presented as a stress loading, since pressure is essentially a 3D stress, i.e.,  𝑝𝑝𝑝𝑝 =
𝜎𝜎𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘.  Pressure affects polymers in the solid state as well as in the molten state. When a polymeric material is 
pressurized, and simultaneously exposed to an external mechanical excitation of strain or stress, not only the local 
movement of molecules is constrained, but also their relative motion to each other is hindered. Consequently, 
molecular rearrangements enforced by external loading are slowed down, which on the macroscale is observed as 
a slow-down in the creep and relaxation processes. Hence, hydrostatic pressure causes changes in the macroscopic 
time-dependency of polymers. The effect of pressure on creep and relaxation process is demonstrated in Fig. 8.  
As shown, higher pressure,  𝑝𝑝𝑝𝑝2 > 𝑝𝑝𝑝𝑝1 ,  shifts the material properties to longer times, which indicates that the 
applied pressure affects all molecular processes equally. Hence, increased pressure does not change the shape of 
the response functions but moves them in parallel along the logarithmic time-axis.  
 
     Suppose that the shaded areas in Fig.  8 indicate a material lifetime. Considering that pressure shifts creep and 
relaxation response functions to longer times one may conclude that by exposing material to high enough pressure 
its glassy state properties may extend the lifetime of a product.  
 
Figure 8: Shift of the creep compliance (left) and relaxation modulus (right) towards longer times under applied 

pressure. Schematics presents behavior of crosslinked elastomers. 
 
 

 
 
     On the macro scale an increase of pressure to which material is exposed has similar effect on material 
mechanical properties as a decrease in temperature.  In both cases we observe “shifting” of response functions 
along the logarithmic time scale. Hence, similar to the time-temperature superposition, we may talk about the 
time-pressure superposition principle. However, they are governed by different processes on the molecular scale. 
A temperature change causes a change in the average kinetic energy of polymeric molecules, while a change in 
pressure does not change the energy state of the molecules but limits the available space for local molecular 
movements. 
 
Time-pressure superposition 
     The time-pressure superposition principle allows shifting of response function segments, measured at different 
isobaric conditions, into a single “mastercurve” that extends over a time scale beyond what can be normally 
measured in a real-time experiment at reference room conditions. It has to be stressed that time-pressure 
superposition principle may be applied only for piezo-rheologically simple materials. These are materials where 
all molecular groups equally respond to the applied pressure. Time-pressure superposition is (still) not sufficiently 
investigated, therefore it is not clear if it is walid for multi-phase materials, such as block- and graft- copolymers, 
hybrid materials, polymers blends, and bituminous materials [4-6]. 
 
     On the macro scale, the time-pressure superposition works similarly as the time-temperature superposition. 
Experiments are performed at different pressures while maintaining the temperature constant. Measured segments 
of relatively short times at different pressures allow construction of the so-called master-curve, which defines 
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behavior of a material at selected reference pressure and temperature conditions, as shown in Figure 9a.  For each 
particular segment the amount of shifting required to construct the mastercurve is specified with the shift factor 
𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖. The sign of the shift factor for a particular pressure 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  is determined by the shift direction of the segment 
relative to the reference pressure (𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓)  at which the mastercurve is constructed.  Shift factors corresponding 
to higher pressures (relative to the reference pressure) are positive, since they move the mastercurve to longer 
times. In addition, one obtains the interrelation between the applied pressure and the corresponding shift factors, 
as demonstrated in figure 9b.   
 

Figure 9: a) Segments of shear relaxation modulus measured at different pressures and the mastercurve 
composed by shifting the segments for the reference pressure p3; b) shift factors ap in dependence on pressure 

 

 
 
    Shifting of the measured segments should be pereformed with the standardized CFS algorithm  (ISO 18437-
6:2017) proposed by Gergesova et al. [10]. 
 
Modelling the effect of pressure on polymers  
     Over years, several models were developed that are capable of accounting for the pressure effect on mechanical 
properties of polymers. Among those most universal models are the FMT model, proposed by Fillers, Moonan 
and Tschoegl [12], and the Knauss-Emri model [13], where both models consider simultaneous effects of 
temperature and pressure. The FMT model is applicable for describing the effect of pressure and temperature in 
the equilibrium state, while the Knauss-Emri model may be used for modeling material behavior under varying 
temperature and pressure conditions, i.e., under conditions when material is not in its thermodynamic equilibrium. 
It is important to mention that when pressure and temperature are constant the Knauss-Emri model reduces to the 
WLF and FMT equations. 
 
     Since impact loading is time-varying loading, the appropriate model is the Knauss-Emri model [13], where the 
stress-strain relations are expressed through deviatoric part, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡), which refers to changes of shape, and a 
dilatometric part, 𝜎𝜎𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), which refers to changes in volume,   
 

𝜎𝜎𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡) = 3� 𝐾𝐾𝐾𝐾[𝑡𝑡𝑡𝑡′(𝑡𝑡𝑡𝑡) − 𝜉𝜉𝜉𝜉′(𝜉𝜉𝜉𝜉)]
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕(𝜉𝜉𝜉𝜉)
𝜕𝜕𝜕𝜕𝜉𝜉𝜉𝜉

𝑡𝑡𝑡𝑡

0
𝑑𝑑𝑑𝑑𝜉𝜉𝜉𝜉, (18) 

 

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡) = 2� 𝐺𝐺𝐺𝐺[𝑡𝑡𝑡𝑡′(𝑡𝑡𝑡𝑡) − 𝜉𝜉𝜉𝜉′(𝜉𝜉𝜉𝜉)]
𝜕𝜕𝜕𝜕𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝜉𝜉𝜉𝜉)
𝜕𝜕𝜕𝜕𝜉𝜉𝜉𝜉

𝑡𝑡𝑡𝑡

0
𝑑𝑑𝑑𝑑𝜉𝜉𝜉𝜉, (19) 

where 

𝑡𝑡𝑡𝑡′(𝑡𝑡𝑡𝑡) − 𝜉𝜉𝜉𝜉′(𝜉𝜉𝜉𝜉) = �
𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢

𝜙𝜙𝜙𝜙[𝑇𝑇𝑇𝑇(𝑢𝑢𝑢𝑢),𝜕𝜕𝜕𝜕(𝑢𝑢𝑢𝑢)] ,
𝑡𝑡𝑡𝑡

𝜉𝜉𝜉𝜉
 (20) 
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Modelling the effect of pressure on polymers 

Over years, several models were developed that are 
capable of accounting for the pressure effect on me-
chanical properties of polymers. Among those most 
universal models are the FMT model, proposed by Fill-
ers, Moonan and Tschoegl [12], and the Knauss-Emri 
model [13], where both models consider simultaneous 
effects of temperature and pressure. The FMT mod-
el is applicable for describing the effect of pressure 
and temperature in the equilibrium state, while the 
Knauss-Emri model may be used for modeling mate-
rial behavior under varying temperature and pressure 
conditions, i.e., under conditions when material is not 
in its thermodynamic equilibrium. It is important to 
mention that when pressure and temperature are con-
stant the Knauss-Emri model reduces to the WLF and 
FMT equations.

Since impact loading is time-varying loading, the 
appropriate model is the Knauss-Emri model [13], 
where the stress-strain relations are expressed through 
deviatoric part, Sij(t), which refers to changes of shape, 
and a dilatometric part, σkk(t), which refers to changes 
in volume,  

where

Here K(t) and  G(t) are time-dependent bulk- and 
shear- modulus, and B(t)=K^(-1) (t) is the time-depen-
dent bulk creep compliance (an inverse of time-depen-
dent bulk modulus),  f_0, and α_f (t)  are the fractional 
free volume and the corresponding time-dependent 
volumetric thermal expansion coefficient, all deter-
mined at reference temperature, T_0, and pressure  
p_0. To measure the required above mentioned materi-
al functions one needs a special measuring system that 
was developed and elaborated by our group and it is 
briefly presented in continuation. 

Characterization of the effect of pressure on polymers

To measure the material functions needed in the 
Knauss-Emri model, an unique experimental setup was 
developed by Moonan and Tschoegl [12] ,  which was 
later upgraded by Kralj, Prodan and Emri [14, 15].  

The measuring system is schematically presented in 
Fig. 10, and consist of four subsystems. The first is the 
thermal subsystem, consisting of a circulator and ther-
mal bath that allows measurements to be performed at 
different temperatures. The second is the pressurizing 
subsystem, consisting of a pressure vessel, piping and 
a hand pump that allow measurements to be performed 
at different pressures. The third is the electronic sub-
system, consisting of an electromagnet, permanent 
magnet and motor charger, carrier amplifier and data 
acquisition, used for controlling specimen excitations 
and signal acquiring, data storing and their analysis. 
The fourth is the measuring subsystem, consisting of 
two measuring inserts: relaxometer and dilatometer, 
shown in Fig. 11. The measuring system allows mea-
surements of thermo-mechanical time-dependent prop-
erties of polymers at different temperature and pres-
sure conditions, ranging from -50°C to 120°C and 0.1 
to 500 MPa, respectively.

The relaxometer, Fig. 11a,  is used for measuring 
time-dependent mechanical properties in shear. The 
specimen is subjected to a load in a form of a constant 
torsional angle or shear strain, applied by the loading 
device, consisting of a triggering mechanism and elec-
tric motor. By measuring the torque moment via a load 
cell, one can measure the decaying shear stress. Know-
ing the applied cause (i.e., the constant shear strain), 
and the resulting response (i.e., decaying shear stress) 
of the material, one can determine the time-dependent 
shear relaxation modulus at different temperature and 
pressure conditions.

The dilatometer, Fig. 11b, is used to measure 
time-dependent bulk (volumetric) properties of poly-
mers at different temperature and pressure conditions. 
Measurements are performed by monitoring changes in 
the length of the specimen L(t,T,p), which result from 
the imposed changes in pressure and/or temperature us-
ing a built-in Linear Variable Differential Transformer 
(LVDT). For isotropic materials the volume V(t,T,p) 
can be estimated from the relative change in length, by 
assuming that relative change of specimen dimensions 
is equal in all direction. Knowing the volume change 
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behavior of a material at selected reference pressure and temperature conditions, as shown in Figure 9a.  For each 
particular segment the amount of shifting required to construct the mastercurve is specified with the shift factor 
𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖. The sign of the shift factor for a particular pressure 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  is determined by the shift direction of the segment 
relative to the reference pressure (𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓)  at which the mastercurve is constructed.  Shift factors corresponding 
to higher pressures (relative to the reference pressure) are positive, since they move the mastercurve to longer 
times. In addition, one obtains the interrelation between the applied pressure and the corresponding shift factors, 
as demonstrated in figure 9b.   
 

Figure 9: a) Segments of shear relaxation modulus measured at different pressures and the mastercurve 
composed by shifting the segments for the reference pressure p3; b) shift factors ap in dependence on pressure 

 

 
 
    Shifting of the measured segments should be pereformed with the standardized CFS algorithm  (ISO 18437-
6:2017) proposed by Gergesova et al. [10]. 
 
Modelling the effect of pressure on polymers  
     Over years, several models were developed that are capable of accounting for the pressure effect on mechanical 
properties of polymers. Among those most universal models are the FMT model, proposed by Fillers, Moonan 
and Tschoegl [12], and the Knauss-Emri model [13], where both models consider simultaneous effects of 
temperature and pressure. The FMT model is applicable for describing the effect of pressure and temperature in 
the equilibrium state, while the Knauss-Emri model may be used for modeling material behavior under varying 
temperature and pressure conditions, i.e., under conditions when material is not in its thermodynamic equilibrium. 
It is important to mention that when pressure and temperature are constant the Knauss-Emri model reduces to the 
WLF and FMT equations. 
 
     Since impact loading is time-varying loading, the appropriate model is the Knauss-Emri model [13], where the 
stress-strain relations are expressed through deviatoric part, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡), which refers to changes of shape, and a 
dilatometric part, 𝜎𝜎𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), which refers to changes in volume,   
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𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢

𝜙𝜙𝜙𝜙[𝑇𝑇𝑇𝑇(𝑢𝑢𝑢𝑢),𝜕𝜕𝜕𝜕(𝑢𝑢𝑢𝑢)] ,
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     Here 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡) and  𝐺𝐺𝐺𝐺(𝑡𝑡𝑡𝑡) are time-dependent bulk- and shear- modulus, and 𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡) = 𝐾𝐾𝐾𝐾−1(𝑡𝑡𝑡𝑡) is the time-dependent 
bulk creep compliance (an inverse of time-dependent bulk modulus),  𝑓𝑓𝑓𝑓0, and 𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)  are the fractional free volume 
and the corresponding time-dependent volumetric thermal expansion coefficient, all determined at reference 
temperature, 𝑇𝑇𝑇𝑇0, and pressure  𝑝𝑝𝑝𝑝0. To measure the required above mentioned material functions one needs a special 
measuring system that was developed and elaborated by our group and it is briefly presented in continuation.  
 
Characterization of the effect of pressure on polymers 
     To measure the material functions needed in the Knauss-Emri model, an unique experimental setup was 
developed by Moonan and Tschoegl [12] ,  which was later upgraded by Kralj, Prodan and Emri [14, 15].   
 
     The measuring system is schematically presented in Fig. 10, and consist of four subsystems. The first is the 
thermal subsystem, consisting of a circulator and thermal bath that allows measurements to be performed at 
different temperatures. The second is the pressurizing subsystem, consisting of a pressure vessel, piping and a 
hand pump that allow measurements to be performed at different pressures. The third is the electronic subsystem, 
consisting of an electromagnet, permanent magnet and motor charger, carrier amplifier and data acquisition, used 
for controlling specimen excitations and signal acquiring, data storing and their analysis. The fourth is the 
measuring subsystem, consisting of two measuring inserts: relaxometer and dilatometer, shown in Fig. 11. The 
measuring system allows measurements of thermo-mechanical time-dependent properties of polymers at different 
temperature and pressure conditions, ranging from -50°C to 120°C and 0.1 to 500 MPa, respectively. 
 

Figure 10: Schematic representation of the measuring system 
 

 
 
     The relaxometer, Fig. 11a,  is used for measuring time-dependent mechanical properties in shear. The specimen 
is subjected to a load in a form of a constant torsional angle or shear strain, applied by the loading device, 
consisting of a triggering mechanism and electric motor. By measuring the torque moment via a load cell, one can 
measure the decaying shear stress. Knowing the applied cause (i.e., the constant shear strain), and the resulting 
response (i.e., decaying shear stress) of the material, one can determine the time-dependent shear relaxation 
modulus at different temperature and pressure conditions. 
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bulk creep compliance (an inverse of time-dependent bulk modulus),  𝑓𝑓𝑓𝑓0, and 𝛼𝛼𝛼𝛼𝑓𝑓𝑓𝑓(𝑡𝑡𝑡𝑡)  are the fractional free volume 
and the corresponding time-dependent volumetric thermal expansion coefficient, all determined at reference 
temperature, 𝑇𝑇𝑇𝑇0, and pressure  𝑝𝑝𝑝𝑝0. To measure the required above mentioned material functions one needs a special 
measuring system that was developed and elaborated by our group and it is briefly presented in continuation.  
 
Characterization of the effect of pressure on polymers 
     To measure the material functions needed in the Knauss-Emri model, an unique experimental setup was 
developed by Moonan and Tschoegl [12] ,  which was later upgraded by Kralj, Prodan and Emri [14, 15].   
 
     The measuring system is schematically presented in Fig. 10, and consist of four subsystems. The first is the 
thermal subsystem, consisting of a circulator and thermal bath that allows measurements to be performed at 
different temperatures. The second is the pressurizing subsystem, consisting of a pressure vessel, piping and a 
hand pump that allow measurements to be performed at different pressures. The third is the electronic subsystem, 
consisting of an electromagnet, permanent magnet and motor charger, carrier amplifier and data acquisition, used 
for controlling specimen excitations and signal acquiring, data storing and their analysis. The fourth is the 
measuring subsystem, consisting of two measuring inserts: relaxometer and dilatometer, shown in Fig. 11. The 
measuring system allows measurements of thermo-mechanical time-dependent properties of polymers at different 
temperature and pressure conditions, ranging from -50°C to 120°C and 0.1 to 500 MPa, respectively. 
 

Figure 10: Schematic representation of the measuring system 
 

 
 
     The relaxometer, Fig. 11a,  is used for measuring time-dependent mechanical properties in shear. The specimen 
is subjected to a load in a form of a constant torsional angle or shear strain, applied by the loading device, 
consisting of a triggering mechanism and electric motor. By measuring the torque moment via a load cell, one can 
measure the decaying shear stress. Knowing the applied cause (i.e., the constant shear strain), and the resulting 
response (i.e., decaying shear stress) of the material, one can determine the time-dependent shear relaxation 
modulus at different temperature and pressure conditions. 
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behavior of a material at selected reference pressure and temperature conditions, as shown in Figure 9a.  For each 
particular segment the amount of shifting required to construct the mastercurve is specified with the shift factor 
𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖. The sign of the shift factor for a particular pressure 𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖  is determined by the shift direction of the segment 
relative to the reference pressure (𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑓𝑓)  at which the mastercurve is constructed.  Shift factors corresponding 
to higher pressures (relative to the reference pressure) are positive, since they move the mastercurve to longer 
times. In addition, one obtains the interrelation between the applied pressure and the corresponding shift factors, 
as demonstrated in figure 9b.   
 

Figure 9: a) Segments of shear relaxation modulus measured at different pressures and the mastercurve 
composed by shifting the segments for the reference pressure p3; b) shift factors ap in dependence on pressure 

 

 
 
    Shifting of the measured segments should be pereformed with the standardized CFS algorithm  (ISO 18437-
6:2017) proposed by Gergesova et al. [10]. 
 
Modelling the effect of pressure on polymers  
     Over years, several models were developed that are capable of accounting for the pressure effect on mechanical 
properties of polymers. Among those most universal models are the FMT model, proposed by Fillers, Moonan 
and Tschoegl [12], and the Knauss-Emri model [13], where both models consider simultaneous effects of 
temperature and pressure. The FMT model is applicable for describing the effect of pressure and temperature in 
the equilibrium state, while the Knauss-Emri model may be used for modeling material behavior under varying 
temperature and pressure conditions, i.e., under conditions when material is not in its thermodynamic equilibrium. 
It is important to mention that when pressure and temperature are constant the Knauss-Emri model reduces to the 
WLF and FMT equations. 
 
     Since impact loading is time-varying loading, the appropriate model is the Knauss-Emri model [13], where the 
stress-strain relations are expressed through deviatoric part, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡𝑡𝑡), which refers to changes of shape, and a 
dilatometric part, 𝜎𝜎𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘(𝑡𝑡𝑡𝑡), which refers to changes in volume,   
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Figure 10: Schematic representation of the measuring system
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of a specimen one can determine different thermo-me-
chanical properties of polymers, such as the bulk creep 
compliance B(t,T,p), equilibrium bulk creep compli-
ance B(T,p)=B(t→∞,T,p), equilibrium bulk modulus, 
K(T,p)=K(t→∞,T,p)=1⁄(B(t,p)), linear thermal expan-
sion coefficient α(T,p)=α(t→∞,T,p), volumetric ther-
mal expansion coefficient 3α( T,p)=3α(t→∞,T,p), and 
compressibility β( T,p)=β(t→∞,T,p).

As an example, we show experimental results on 
shear relaxation modulus for semicrystalline polyam-
ide 6 (PA6), Fig. 12, and elastomeric natural rubber, 
Fig. 13. Both materials are commonly used for damp-
ing vibrations and impact loading. The diagrams on 
the left show measured segments at indicated constant 
pressures, whereas the diagrams on the right show the 
corresponding master curves. 

Figure 12 displays behavior of PA6. Even though 
PA6 is a semicrystalline material, the range of pressures 
available for measurements of shear relaxation modulus 
at selected reference temperature was not high enough to 
reach the material glassy state. Therefore, in Fig. 12, only 
the transition region of the shear modulus is visible.

Natural rubber is a cross-linked material, which 
means that it should exhibit both glassy and equilibri-
um plateaus.  However, at the highest pressure of 400 
MPa material starts to enter its glassy plateau, whereas 
at atmospheric pressure it  again only starts to approach 
its rubbery equilibrium plateau, Fig. 13. To reach both 
plateaus one would need to perform experiments at 
higher temperatures and much higher pressures.

Natural rubber is a cross-linked material, which 
means that it should exhibit both glassy and equilibri-
um plateaus.  However, at the highest pressure of 400 
MPa material starts to enter its glassy plateau, whereas 
at atmospheric pressure it  again only starts to approach 
its rubbery equilibrium plateau, Fig. 13. To reach both 
plateaus one would need to perform experiments at 
higher temperatures and much higher pressures.

3. Flowability of granular systems

We found [1, 2] that viscoelastic granular materi-
als with properly selected multimodal size-distribution 
exhibit fluid-like behavior, while maintaining behav-
ior of the bulk material from which they were made. 
Hence, they may be used as “pressurizing media” to 
impose inherent hydrostatic pressure on itself within 
a flexible rigid container, and consequently change its 
own damping properties. In order to obtain a hydro-
static pressure within the granular system one need to 
be able to measure flowability (readiness to flow) of 
a granular material in the state of no-motion, i.e., the 
so-called zero-rate fluidity.   In order to study the so-
called zero-rate fluidity of granular systems we have 
developed a new apparatus, called the Granular Fric-
tion Analyzer (GFA) [16-18]. 

The design of the GFA apparatus is based on the 
realization that Newtonian fluids have unique prop-
erty to redirect forces applied to them to all direc-
tions equally, and throughout the volume they occu-

 13 

     The dilatometer, Fig. 11b, is used to measure time-dependent bulk (volumetric) properties of polymers at 
different temperature and pressure conditions. Measurements are performed by monitoring changes in the length 
of the specimen 𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝), which result from the imposed changes in pressure and/or temperature using a built-in 
Linear Variable Differential Transformer (LVDT). For isotropic materials the volume 𝑉𝑉𝑉𝑉(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) can be estimated 
from the relative change in length, by assuming that relative change of specimen dimensions is equal in all 
direction. Knowing the volume change of a specimen one can determine different thermo-mechanical properties 
of polymers, such as the bulk creep compliance 𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝), equilibrium bulk creep compliance 𝐵𝐵𝐵𝐵(𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) = 𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡 →
∞,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝), equilibrium bulk modulus, 𝐾𝐾𝐾𝐾(𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) = 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡 → ∞,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) = 1 𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡, 𝑝𝑝𝑝𝑝)⁄ , linear thermal expansion coefficient 
𝛼𝛼𝛼𝛼(𝑇𝑇𝑇𝑇,𝑝𝑝𝑝𝑝) = 𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 → ∞,𝑇𝑇𝑇𝑇,𝑝𝑝𝑝𝑝) , volumetric thermal expansion coefficient 3𝛼𝛼𝛼𝛼( 𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) = 3𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 → ∞,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) , and 
compressibility 𝛽𝛽𝛽𝛽( 𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) = 𝛽𝛽𝛽𝛽(𝑡𝑡𝑡𝑡 → ∞,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝).  
 

Figure 11: (a) relaxometer insert and (b) dilatometer insert of the measuring system 
 

 
 
 
     As an example, we show experimental results on shear relaxation modulus for semicrystalline polyamide 6 
(PA6), Fig. 12, and elastomeric natural rubber, Fig. 13. Both materials are commonly used for damping vibrations 
and impact loading. The diagrams on the left show measured segments at indicated constant pressures, whereas 
the diagrams on the right show the corresponding master curves.  
 

Figure 12: Polyamide 6 PA6: a) shear relaxation modulus segments measured at different pressures and 
b) segments shifted to mastercurve with the shift factors 

 

 
 
     Figure 12 displays behavior of PA6. Even though PA6 is a semicrystalline material, the range of pressures 
available for measurements of shear relaxation modulus at selected reference temperature was not high enough to 
reach the material glassy state. Therefore, in Fig. 12, only the transition region of the shear modulus is visible. 
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     The dilatometer, Fig. 11b, is used to measure time-dependent bulk (volumetric) properties of polymers at 
different temperature and pressure conditions. Measurements are performed by monitoring changes in the length 
of the specimen 𝐿𝐿𝐿𝐿(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝), which result from the imposed changes in pressure and/or temperature using a built-in 
Linear Variable Differential Transformer (LVDT). For isotropic materials the volume 𝑉𝑉𝑉𝑉(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) can be estimated 
from the relative change in length, by assuming that relative change of specimen dimensions is equal in all 
direction. Knowing the volume change of a specimen one can determine different thermo-mechanical properties 
of polymers, such as the bulk creep compliance 𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝), equilibrium bulk creep compliance 𝐵𝐵𝐵𝐵(𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) = 𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡 →
∞,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝), equilibrium bulk modulus, 𝐾𝐾𝐾𝐾(𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) = 𝐾𝐾𝐾𝐾(𝑡𝑡𝑡𝑡 → ∞,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) = 1 𝐵𝐵𝐵𝐵(𝑡𝑡𝑡𝑡, 𝑝𝑝𝑝𝑝)⁄ , linear thermal expansion coefficient 
𝛼𝛼𝛼𝛼(𝑇𝑇𝑇𝑇,𝑝𝑝𝑝𝑝) = 𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 → ∞,𝑇𝑇𝑇𝑇,𝑝𝑝𝑝𝑝) , volumetric thermal expansion coefficient 3𝛼𝛼𝛼𝛼( 𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) = 3𝛼𝛼𝛼𝛼(𝑡𝑡𝑡𝑡 → ∞,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) , and 
compressibility 𝛽𝛽𝛽𝛽( 𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝) = 𝛽𝛽𝛽𝛽(𝑡𝑡𝑡𝑡 → ∞,𝑇𝑇𝑇𝑇, 𝑝𝑝𝑝𝑝).  
 

Figure 11: (a) relaxometer insert and (b) dilatometer insert of the measuring system 
 

 
 
 
     As an example, we show experimental results on shear relaxation modulus for semicrystalline polyamide 6 
(PA6), Fig. 12, and elastomeric natural rubber, Fig. 13. Both materials are commonly used for damping vibrations 
and impact loading. The diagrams on the left show measured segments at indicated constant pressures, whereas 
the diagrams on the right show the corresponding master curves.  
 

Figure 12: Polyamide 6 PA6: a) shear relaxation modulus segments measured at different pressures and 
b) segments shifted to mastercurve with the shift factors 

 

 
 
     Figure 12 displays behavior of PA6. Even though PA6 is a semicrystalline material, the range of pressures 
available for measurements of shear relaxation modulus at selected reference temperature was not high enough to 
reach the material glassy state. Therefore, in Fig. 12, only the transition region of the shear modulus is visible. 
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Figure 13: Natural rubber, NR: a) shear relaxation modulus segments measured at different pressures and b) 

segments shifted to mastercurve with the shift factors 
 

 
 
     Natural rubber is a cross-linked material, which means that it should exhibit both glassy and equilibrium 
plateaus.  However, at the highest pressure of 400 MPa material starts to enter its glassy plateau, whereas at 
atmospheric pressure it  again only starts to approach its rubbery equilibrium plateau, Fig. 13. To reach both 
plateaus one would need to perform experiments at higher temperatures and much higher pressures. 
 
3. Flowability of granular systems 

 
     We found [1, 2] that viscoelastic granular materials with properly selected multimodal size-distribution exhibit 
fluid-like behavior, while maintaining behavior of the bulk material from which they were made. Hence, they 
may be used as “pressurizing media” to impose inherent hydrostatic pressure on itself within a flexible rigid 
container, and consequently change its own damping properties. In order to obtain a hydrostatic pressure within 
the granular system one need to be able to measure flowability (readiness to flow) of a granular material in the 
state of no-motion, i.e., the so-called zero-rate fluidity.   In order to study the so-called zero-rate fluidity of 
granular systems we have developed a new apparatus, called the Granular Friction Analyzer (GFA) [16-18]. 
 
Figure 14: Schematics of vertical PV(z) and horizontal PH(z) internal pressure; and axial εa (z) and tangential 

εt (z) strains at uniaxial compression in the case of (a) Newtonian fluid and (b) Granular material 
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     The design of the GFA apparatus is based on the realization that Newtonian fluids have unique property to 
redirect forces applied to them to all directions equally, and throughout the volume they occupy. Hence, if we 
expose a Newtonian fluid to uniaxial compression loading  𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 within a closed cylinder,  via a piston, the pressure 
distribution in all directions will be constant, 𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹 = 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴⁄ = 𝑝𝑝𝑝𝑝𝑉𝑉𝑉𝑉 = 𝑝𝑝𝑝𝑝𝐻𝐻𝐻𝐻 ,  as shown in Fig. 14a. On the other hand, if 
we expose granular material to the same load, the pressure distribution in axial z-direction will diminish with the 
distance from the piston, as shown in Fig. 14b. Since one cannot measure pressure distribution directly, one should 
measure deformation of the cylinder surface in axial, 𝜀𝜀𝜀𝜀𝑎𝑎𝑎𝑎(𝑧𝑧𝑧𝑧), and  tangential, 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡(𝑧𝑧𝑧𝑧),  direction along the axis of the 
cylinder, using straingauges [17], or digital immage correlation (DIC) technic [18]. 
 
     As a measure of the flowability of granular materials we have introduced the GFA index for characterizing 
the flow behaviour of granular materials under uniaxial compression loading. The calculation of the GFA index 
is based on the integration of the internal pressure distribution along the cylinder wall, within which the granular 
material is being uniaxially compressed by a piston, and normalized by the pressure distribution of a Newtonian 
fluid [17, 18], 

𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴index =  
∫ 𝑃𝑃𝑃𝑃V(𝑧𝑧𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧𝐿𝐿𝐿𝐿
0
𝑃𝑃𝑃𝑃F. 𝐿𝐿𝐿𝐿

=
𝐴𝐴𝐴𝐴

𝐹𝐹𝐹𝐹T. 𝐿𝐿𝐿𝐿
� 𝑃𝑃𝑃𝑃V(𝑧𝑧𝑧𝑧) 𝑑𝑑𝑑𝑑𝑧𝑧𝑧𝑧
𝐿𝐿𝐿𝐿

0
, (23) 

where 

𝑃𝑃𝑃𝑃V =
4.𝐹𝐹𝐹𝐹V

𝜋𝜋𝜋𝜋𝐷𝐷𝐷𝐷i2. (1 + 𝜀𝜀𝜀𝜀t)2
, (24) 

 
𝐹𝐹𝐹𝐹𝑉𝑉𝑉𝑉 = 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 + 𝜋𝜋𝜋𝜋𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 . (1 + 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡). 𝑡𝑡𝑡𝑡𝑤𝑤𝑤𝑤 .𝜎𝜎𝜎𝜎𝑎𝑎𝑎𝑎, (25) 

and 

𝜎𝜎𝜎𝜎a =
𝐸𝐸𝐸𝐸w(𝜀𝜀𝜀𝜀a + 𝜈𝜈𝜈𝜈w. 𝜀𝜀𝜀𝜀t)

1 − 𝜈𝜈𝜈𝜈w2
 (26) 

 
     Here 𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖  is the inner diameter of the cylinder, whereas 𝐸𝐸𝐸𝐸𝑤𝑤𝑤𝑤 , 𝜈𝜈𝜈𝜈𝑤𝑤𝑤𝑤  , 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡 and 𝜀𝜀𝜀𝜀𝑎𝑎𝑎𝑎 denote the Young’s modulus, the 
Poisson’s ratio, and the tangential and axial strain of the cylinder wall, respectively. Taking the measurements of 
tangential 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡  and axial strain 𝜀𝜀𝜀𝜀𝑎𝑎𝑎𝑎  on the cylinder wall in n points along the z axis the related vertical internal 
pressure 𝑃𝑃𝑃𝑃V(𝑧𝑧𝑧𝑧) can be calculated and based on that the GFA-index.  
 
     We have used the GFA apparatus and the GFA-index to optimize the flowability of granular materials used in 
the new generation damping elements.  Granular materials with properly selected flowability may be used as 
“pressurizing media” to impose inherent hydrostatic pressure on itself within a flexible rigid container, and, 
consequently, change its own stiffness and damping properties. 
 
 
4. Advanced impact and vibration isolation 

 

Figure 11: (a) relaxometer insert and (b) dilatometer insert of the 
measuring system

Figure 12: Polyamide 6 PA6: a) shear relaxation modulus segments 
measured at different pressures and b) segments shifted to master-
curve with the shift factors

Figure 13: Natural rubber, NR: a) shear relaxation modulus seg-
ments measured at different pressures and b) segments shifted to 
mastercurve with the shift factors

Figure 14: Schematics of vertical PV(z) and horizontal PH(z) internal 
pressure; and axial εa (z) and tangential εt (z) strains at uniaxial com-
pression in the case of (a) Newtonian fluid and (b) Granular material
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py. Hence, if we expose a Newtonian fluid to uniaxial 
compression loading  FT within a closed cylinder,  via 
a piston, the pressure distribution in all directions will 
be constant, pF=FT⁄A=pV=pH,  as shown in Fig. 14a. On 
the other hand, if we expose granular material to the 
same load, the pressure distribution in axial z-direc-
tion will diminish with the distance from the piston, as 
shown in Fig. 14b. Since one cannot measure pressure 
distribution directly, one should measure deformation 
of the cylinder surface in axial, ε_a (z), and  tangential, 
ε_t (z),  direction along the axis of the cylinder, using 
straingauges [17], or digital immage correlation (DIC) 
technic [18].

As a measure of the flowability of granular mate-
rials we have introduced the GFA index for character-
izing the flow behaviour of granular materials under 
uniaxial compression loading. The calculation of the 
GFA index is based on the integration of the internal 
pressure distribution along the cylinder wall, within 
which the granular material is being uniaxially com-
pressed by a piston, and normalized by the pressure 
distribution of a Newtonian fluid [17, 18],

where

and

Here Di is the inner diameter of the cylinder, where-
as Ew, νw , εt and εa denote the Young’s modulus, the 
Poisson’s ratio, and the tangential and axial strain of 
the cylinder wall, respectively. Taking the measure-
ments of tangential ε_t and axial strain εa on the cylin-
der wall in n points along the z axis the related vertical 
internal pressure PV (z) can be calculated and based on 
that the GFA-index. 

We have used the GFA apparatus and the GFA-index 
to optimize the flowability of granular materials used in 
the new generation damping elements.  Granular mate-
rials with properly selected flowability may be used as 
“pressurizing media” to impose inherent hydrostatic pres-
sure on itself within a flexible rigid container, and, conse-
quently, change its own stiffness and damping properties.

4. Advanced impact and vibration isolation

The existing solutions for structural and vibration 
control do not and cannot fully utilize damping char-

acteristics of time- and frequency-dependent materials 
because their maximal damping properties are locat-
ed at frequencies that are far away from the frequen-
cy range of engineering interest, as it is schematically 
shown in Fig. 15.

    The frequency domain material functions may 
be obtained through the interconversion from the cor-
responding creep and relaxation functions measured in 
time domain [3, 9],

and

where G’(ω) and J’(ω) are the storrage modulus 
and storrage complaince, and G’’(ω) and J’’(ω) are the 
loss modulus and loss compliance, respectively. The 
first two represent material stiffness, whereas the last 
two its damping and energy absorption properties.

   As it was shown, by exposing material to hy-
drostatic pressure their properties will be shifted along 
the logarithmic time- and frequency-scale. In time-do-
main increased pressure shifts material properties to 
longer times, while in frequency-domain all four mate-
rial functions, the storrage modulus and storrage com-
plaince, and the loss modulus and loss compliance are 
shifted to the left towards lower frequencies, as it is 
shematically shown with the arrow in Fig. 15.  Hence, 
by proper selection of a hydrostatic pressure to which 
material is exposed one can match the frequency range 
of its maximum damping properties with the resonance 
frequency of the selected vibrating structure, or with 
a rate of an impact loading. In this way we can fully 
utilize damping characteristics of the selected damping 
material and maximize the energy absorption proper-
ties of a damper. 

     Now, an immediate question is how to gener-
ate the hydrostatic pressure within a selected damping 
material? The easiest engineering solution would be to 
use a uniaxial or bi-axial loading. Unfortunately, this 
is not possible!  Pressure is a sum of principle stress-
es,  p=σ11+σ22+σ33, and as soon as the applied loading 
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the flow behaviour of granular materials under uniaxial compression loading. The calculation of the GFA index 
is based on the integration of the internal pressure distribution along the cylinder wall, within which the granular 
material is being uniaxially compressed by a piston, and normalized by the pressure distribution of a Newtonian 
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𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹𝐴𝐴𝐴𝐴index =  
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, (23) 

where 

𝑃𝑃𝑃𝑃V =
4.𝐹𝐹𝐹𝐹V

𝜋𝜋𝜋𝜋𝐷𝐷𝐷𝐷i2. (1 + 𝜀𝜀𝜀𝜀t)2
, (24) 
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 (26) 
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distance from the piston, as shown in Fig. 14b. Since one cannot measure pressure distribution directly, one should 
measure deformation of the cylinder surface in axial, 𝜀𝜀𝜀𝜀𝑎𝑎𝑎𝑎(𝑧𝑧𝑧𝑧), and  tangential, 𝜀𝜀𝜀𝜀𝑡𝑡𝑡𝑡(𝑧𝑧𝑧𝑧),  direction along the axis of the 
cylinder, using straingauges [17], or digital immage correlation (DIC) technic [18]. 
 
     As a measure of the flowability of granular materials we have introduced the GFA index for characterizing 
the flow behaviour of granular materials under uniaxial compression loading. The calculation of the GFA index 
is based on the integration of the internal pressure distribution along the cylinder wall, within which the granular 
material is being uniaxially compressed by a piston, and normalized by the pressure distribution of a Newtonian 
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pressure 𝑃𝑃𝑃𝑃V(𝑧𝑧𝑧𝑧) can be calculated and based on that the GFA-index.  
 
     We have used the GFA apparatus and the GFA-index to optimize the flowability of granular materials used in 
the new generation damping elements.  Granular materials with properly selected flowability may be used as 
“pressurizing media” to impose inherent hydrostatic pressure on itself within a flexible rigid container, and, 
consequently, change its own stiffness and damping properties. 
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     The existing solutions for structural and vibration control do not and cannot fully utilize damping 
characteristics of time- and frequency-dependent materials because their maximal damping properties are located 
at frequencies that are far away from the frequency range of engineering interest, as it is schematically shown in 
Fig. 15.  
 

Figure 15:  Frequency dependence of damping for materials used in vibration and impact isolations 

 
 
     The frequency domain material functions may be obtained through the interconversion from the corresponding 
creep and relaxation functions measured in time domain [3, 9], 
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where 𝐺𝐺𝐺𝐺′(𝜔𝜔𝜔𝜔) and 𝐽𝐽𝐽𝐽′(𝜔𝜔𝜔𝜔) are the storrage modulus and storrage complaince, and 𝐺𝐺𝐺𝐺′′(𝜔𝜔𝜔𝜔) and 𝐽𝐽𝐽𝐽′′(𝜔𝜔𝜔𝜔) are the loss 
modulus and loss compliance, respectively. The first two represent material stiffness, whereas the last two its 
damping and energy absorption properties.  
 
    As it was shown, by exposing material to hydrostatic pressure their properties will be shifted along the 
logarithmic time- and frequency-scale. In time-domain increased pressure shifts material properties to longer 
times, while in frequency-domain all four material functions, the storrage modulus and storrage complaince, and 
the loss modulus and loss compliance are shifted to the left towards lower frequencies, as it is shematically shown 
with the arrow in Fig. 15.  Hence, by proper selection of a hydrostatic pressure to which material is exposed one 
can match the frequency range of its maximum damping properties with the resonance frequency of the selected 
vibrating structure, or with a rate of an impact loading. In this way we can fully utilize damping characteristics of 
the selected damping material and maximize the energy absorption properties of a damper.  
 
     Now, an immediate question is how to generate the hydrostatic pressure within a selected damping material? 
The easiest engineering solution would be to use a uniaxial or bi-axial loading. Unfortunately, this is not possible!  
Pressure is a sum of principle stresses,  𝑝𝑝𝑝𝑝 = 𝜎𝜎𝜎𝜎11 + 𝜎𝜎𝜎𝜎22 + 𝜎𝜎𝜎𝜎33, and as soon as the applied loading is not three 
dimensional the shear stresses will appear and, before reaching the pressures that are needed to shift material 
functions, the shear stresses will reach a critical value and damping material will fail. This is schematically 
demonstrated in Fig. 16.  
 

Figure 16:  Material failure envelope 
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is not three dimensional the shear stresses will appear 
and, before reaching the pressures that are needed to 
shift material functions, the shear stresses will reach 
a critical value and damping material will fail. This is 
schematically demonstrated in Fig. 16. 

As mentioned in section 3, the inventive solution 
is to use granular materials for which it is valid that 
as dimension of particles becomes smaller the shear 
stresses within the material diminish faster than the 
principle stresses,

At the same time, as flowability analysis showed, 
granular materials when excited beyond a certain lev-
el of stress flow similarly as liquids while maintain-
ing all properties of a bulk material. Hence, micro- to 
macro- size multimodal elastomeric granular material 
may be used as a pressurizing media (similarly as air 
in tires) to impose hydrostatic pressure on themselves, 
and change frequency dependence of its own energy 
absorption properties. With proper adjustment of pres-
sure, we also adjust the stiffness of the damping ele-
ment (again, similar as with air in tires). Our proposed 
solution consists of micro- and macro-sized particles 
[1,2]. Smaller particles lead to more surface area per 
unit volume, which increases the magnitude of fric-
tional dissipation energy caused by particle-particle in-
teraction; while larger particles will allow macroscopic 
flow, as described above. Hence, our proposed solution 
utilizes all possible energy dissipation mechanisms 
and represents an optimal (ultimate) solution for the 
proposed novel damping system. Such patented damp-
ing elements [1, 2] consist of elastomeric granular ma-
terial, which is encapsulated in a flexible tube made 
out of rigid fibers, as schematically shown in Fig. 17.

This design enables us to pressurize the granular 
material inside the damping element. At higher pres-
sures properties of material shift to lower frequencies, 
compared to the reference values, see Fig. 18.

Working principle of such damping element is sche-
matically explained in Fig. 18.  The bell-shaped solid 
line shows the “original” dynamic response of a struc-

ture exposed to, for example, an earthquake excitation 
and, as a dashed line, the reduced dynamic response 
of the structure when the new damping elements are 
applied. The solid line on the right-hand side of Fig. 18 
schematically shows the energy absorption frequency 
dependence of an elastomeric granular material at at-
mospheric pressure p0. If the same elastomeric material 
is pressurized to a properly selected pressure p>p0 its 
damping properties may be frequency adjusted such so 
to match the earthquake excitation frequency, shown 
with the dashed line, and reduce the dynamic response 
of the structure 

Experimental results on TPU

     As an example, we show the results of the effect 
of hydrostatic pressure on stiffness and damping prop-
erties of a commercial TPU material from the Elastol-
lan® 11 series , i.e., 1190A, which is already used in 
manufacturing of vibration insulation.

     Material stiffness is represented with the storage 
modulus G’(ω), whereas its damping by the loss modu-
lus G’’(ω). The experiments to determine TPU’s G’(ω) 
and G’’(ω) pressure dependence were performed on 
our high-pressure experimental setup presented above. 
For details on experimental procedure see [19]. 

     For clarity reasons the results on storage G’(ω),  
and loss modulus G’’(ω) are shown for only two pres-
sures, i.e., 1 bar and 2000 bar. The full symbols present 
measurements done at lower pressure,  p=1 bar, where-
as the empty symbols present measurements done at 
higher pressure, p=2000 bar. The results for the stor-
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2 "Thermoplastic Polyurethane Elastomers (TPU), Elastollan R Product Range," (2016). 
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As mentioned in section 3, the inventive solution is to use granular materials for which it is valid that as dimension 
of particles becomes smaller the shear stresses within the material diminish faster than the principle stresses, 

lim
𝑉𝑉𝑉𝑉→0

𝜎𝜎𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= ∞  .  (29) 

 
     At the same time, as flowability analysis showed, granular materials when excited beyond a certain level of 
stress flow similarly as liquids while maintaining all properties of a bulk material. Hence, micro- to macro- size 
multimodal elastomeric granular material may be used as a pressurizing media (similarly as air in tires) to impose 
hydrostatic pressure on themselves, and change frequency dependence of its own energy absorption properties. 
With proper adjustment of pressure, we also adjust the stiffness of the damping element (again, similar as with air 
in tires). Our proposed solution consists of micro- and macro-sized particles [1,2]. Smaller particles lead to more 
surface area per unit volume, which increases the magnitude of frictional dissipation energy caused by particle-
particle interaction; while larger particles will allow macroscopic flow, as described above. Hence, our proposed 
solution utilizes all possible energy dissipation mechanisms and represents an optimal (ultimate) solution for the 
proposed novel damping system. Such patented damping elements [1, 2] consist of elastomeric granular material, 
which is encapsulated in a flexible tube made out of rigid fibers, as schematically shown in Fig. 17. 
 
     This design enables us to pressurize the granular material inside the damping element. At higher pressures 
properties of material shift to lower frequencies, compared to the reference values, see Fig. 18. 
 
Figure 17: Damping elements consisting of pressurized elastomeric granular material within a tube made from 

rigid fibers. 
 

 17 

 

 
 
 
 
As mentioned in section 3, the inventive solution is to use granular materials for which it is valid that as dimension 
of particles becomes smaller the shear stresses within the material diminish faster than the principle stresses, 

lim
𝑉𝑉𝑉𝑉→0

𝜎𝜎𝜎𝜎𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

= ∞  .  (29) 

 
     At the same time, as flowability analysis showed, granular materials when excited beyond a certain level of 
stress flow similarly as liquids while maintaining all properties of a bulk material. Hence, micro- to macro- size 
multimodal elastomeric granular material may be used as a pressurizing media (similarly as air in tires) to impose 
hydrostatic pressure on themselves, and change frequency dependence of its own energy absorption properties. 
With proper adjustment of pressure, we also adjust the stiffness of the damping element (again, similar as with air 
in tires). Our proposed solution consists of micro- and macro-sized particles [1,2]. Smaller particles lead to more 
surface area per unit volume, which increases the magnitude of frictional dissipation energy caused by particle-
particle interaction; while larger particles will allow macroscopic flow, as described above. Hence, our proposed 
solution utilizes all possible energy dissipation mechanisms and represents an optimal (ultimate) solution for the 
proposed novel damping system. Such patented damping elements [1, 2] consist of elastomeric granular material, 
which is encapsulated in a flexible tube made out of rigid fibers, as schematically shown in Fig. 17. 
 
     This design enables us to pressurize the granular material inside the damping element. At higher pressures 
properties of material shift to lower frequencies, compared to the reference values, see Fig. 18. 
 
Figure 17: Damping elements consisting of pressurized elastomeric granular material within a tube made from 

rigid fibers. 
 

Figure 17: Damping elements consisting of pressurized elastomeric 
granular material within a tube made from rigid fibers.

Figure 17: Damping elements consisting of pressurized elastomeric 
granular material within a tube made from rigid fibers.

Figure 16:  Material failure envelope
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age modulus G’(ω) are shown in Fig. 19, and for the 
loss modulus G’’(ω)  in Fig. 20. As expected, the value 
of both material functions representing stiffness and 
damping greatly increase as the pressure is increased 
from 1 to 2000 bar.

Since the vibrations and noise causing the most 
discomfort are located in the frequency range between 
1 and 1000 Hz, we will examine the effect of hydro-
static pressure on TPU material stiffness, represented 
by G’(ω),  and TPU material damping, represented by 
G’’(ω),  at 1 Hz and 1000 Hz, at a reference tempera-
ture Tref=60°C. Comparison is shown in Fig. 21.

Figure 21 contains two diagrams, the left diagram 
shows the effect of pressure on G’ (ω), and the right 
diagram the effect of pressure on G’’ (ω). In both cas-
es is shown material performance at 1Hz and 1000Hz. 
At frequency 1 Hz and pressure 1 bar, the storage 
modulus is G’ (ω=1Hz,p=1bar)=2.99MPa, whereas 

at pressure 2000 bar the storage modulus increases 
to G’ (ω=1Hz,p=2000bar)=4.07MPa.  Hence, mate-
rial becomes 1.4 times stiffer. At the same frequen-
cy of 1Hz the loss modulus at pressure 1 bar is G’’ 
(ω=1Hz,p=1bar)=0,29MPa, whereas at pressure 2000 
bar it rises to G’’ (ω=1Hz,p=2000bar)=0,92MPa. This 
means that at elevated pressure the materials ability to 
dissipate energy increases 3.15 times. 

At ω=1000 Hz, we observe analogous 
trends. At 1bar the storage modulus is G’ 
(ω=1000Hz,p=1bar)=6.899MPa, whereas at the 
pressure 2000 bar the storage modulus becomes G’ 
(ω=1000Hz,p=2000bar)=23.89MPa, meaning that 
material stiffness is increased 3.46 times. At the 
same time the loss modulus at pressure 1 bar isG’’ 
(ω=1000Hz,p=1bar)=2.33MPa, and at pressure 2000 
bar it becomes G’’ (ω=1000Hz,p=2000bar)=12.65MPa. 
Thus, the material ability to dissipate energy has in-
creased 5.41 times. 

Of course, by further increasing material hydrostat-
ic pressure one may increase the stiffness and damping 
properties much further, as it is demonstrated in con-
tinuation. 

Stiffness of an isolation depends on its geometry 
and the storage modulus of a material from which it is 
built, whereas, its energy absorption capability is de-
fined by isolation total volume and material loss mod-
ulus. Hence, if we keep the geometry and volume of 
an isolation constant both its stiffness and its energy 
absorption capability will depend on material storage 
and loss modulus only. In fact, the main interest is to 
understand how much (how many times) we can in-
crease stiffness and energy absorption of an isolation 
by exposing the material from which it is made of to a 
selected hydrostatic pressure. Therefore, we introduce 
two coefficients, first, defining the increase of isola-
tion stiffness by exposing it to a selected hydrostatic 
pressure p, relative to the isolation stiffness at the en-
vironmental pressure p0 = 0.1MPa:

and the second

which defines an increase of isolation energy ab-
sorption (damping) obtained by exposing the analyzed 
TPU to a selected hydrostatic pressure. Comparison 
is made within the frequency range (1 - 10000Hz), 
which is of main interest for an impact and vibration 
isolation. The results are shown in two different forms: 
(i) Kk(p,ω) and Kd(p,ω) as functions of frequency, for 
four different pressures; and (ii) Kk(p,ω) and Kd(p,ω) 
as functions of hydrostatic pressure, for four different 
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     For clarity reasons the results on storage 𝐺𝐺𝐺𝐺′(ω),  and loss modulus 𝐺𝐺𝐺𝐺′′(𝜔𝜔𝜔𝜔) are shown for only two pressures, 
i.e., 1 bar and 2000 bar. The full symbols present measurements done at lower pressure,  𝑝𝑝𝑝𝑝 = 1 𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏, whereas the 
empty symbols present measurements done at higher pressure, 𝑝𝑝𝑝𝑝 = 2000 𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏. The results for the storage modulus 
𝐺𝐺𝐺𝐺′(ω) are shown in Fig. 19, and for the loss modulus 𝐺𝐺𝐺𝐺′′(𝜔𝜔𝜔𝜔)  in Fig. 20. As expected, the value of both material 
functions representing stiffness and damping greatly increase as the pressure is increased from 1 to 2000 bar. 
 

Figure 19: Storage modulus,  𝐺𝐺𝐺𝐺′(ω), at 𝑝𝑝𝑝𝑝 = 1 𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 and 𝑝𝑝𝑝𝑝 = 2000 𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏 
 

 
 

Figure 20:  Loss modulus 𝑮𝑮𝑮𝑮′′(𝛚𝛚𝛚𝛚) at  𝒑𝒑𝒑𝒑 = 𝟏𝟏𝟏𝟏 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 and 𝒑𝒑𝒑𝒑 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 
 
 

 
      Since the vibrations and noise causing the most discomfort are located in the frequency range between 1 and 
1000 Hz, we will examine the effect of hydrostatic pressure on TPU material stiffness, represented by 𝐺𝐺𝐺𝐺′(ω),  and 
TPU material damping, represented by 𝐺𝐺𝐺𝐺′′(ω),  at 1 Hz and 1000 Hz, at a reference temperature 𝑇𝑇𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 60∘𝐶𝐶𝐶𝐶. 
Comparison is shown in Fig. 21. 
 

Figure 21: Storage, 𝑮𝑮𝑮𝑮′(𝛚𝛚𝛚𝛚),  and loss, 𝑮𝑮𝑮𝑮′′(𝛚𝛚𝛚𝛚), modulus of TPU at  𝒑𝒑𝒑𝒑 = 𝟏𝟏𝟏𝟏 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 and 𝒑𝒑𝒑𝒑 = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 
at 1 HZ and 1000 Hz. 
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     Figure 21 contains two diagrams, the left diagram shows the effect of pressure on 𝐺𝐺𝐺𝐺′(ω), and the right diagram 
the effect of pressure on 𝐺𝐺𝐺𝐺′′(ω). In both cases is shown material performance at 1Hz and 1000Hz. At frequency 
1 Hz and pressure 1 bar, the storage modulus is 𝐺𝐺𝐺𝐺′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 2.99𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, whereas at pressure 2000 
bar the storage modulus increases to 𝐺𝐺𝐺𝐺′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 4.07𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.  Hence, material becomes 1.4 
times stiffer. At the same frequency of 1Hz the loss modulus at pressure 1 bar is 𝐺𝐺𝐺𝐺′′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) =
0,29𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, whereas at pressure 2000 bar it rises to 𝐺𝐺𝐺𝐺′′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 0,92𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. This means that 
at elevated pressure the materials ability to dissipate energy increases 3.15 times.  
 
     At ω=1000 Hz, we observe analogous trends. At 1bar the storage modulus is 𝐺𝐺𝐺𝐺′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) =
6.899𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, whereas at the pressure 2000 bar the storage modulus becomes 𝐺𝐺𝐺𝐺′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) =
23.89𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, meaning that material stiffness is increased 3.46 times. At the same time the loss modulus at pressure 
1 bar is𝐺𝐺𝐺𝐺′′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 2.33𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, and at pressure 2000 bar it becomes 𝐺𝐺𝐺𝐺′′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 =
2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 12.65𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Thus, the material ability to dissipate energy has increased 5.41 times.  
 
     Of course, by further increasing material hydrostatic pressure one may increase the stiffness and damping 
properties much further, as it is demonstrated in continuation.  
 
     Stiffness of an isolation depends on its geometry and the storage modulus of a material from which it is built, 
whereas, its energy absorption capability is defined by isolation total volume and material loss modulus. Hence, 
if we keep the geometry and volume of an isolation constant both its stiffness and its energy absorption capability 
will depend on material storage and loss modulus only. In fact, the main interest is to understand how much (how 
many times) we can increase stiffness and energy absorption of an isolation by exposing the material from which 
it is made of to a selected hydrostatic pressure. Therefore, we introduce two coefficients, first, defining the increase 
of isolation stiffness by exposing it to a selected hydrostatic pressure p, relative to the isolation stiffness at the 
environmental pressure p0 = 0.1MPa: 
 

𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) =
𝐺𝐺𝐺𝐺′(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔)
𝐺𝐺𝐺𝐺′(𝑝𝑝𝑝𝑝0,𝜔𝜔𝜔𝜔)

  .  (30) 

 
and the second 
 

𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) =
𝐺𝐺𝐺𝐺′′(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔)
𝐺𝐺𝐺𝐺′′(𝑝𝑝𝑝𝑝0,𝜔𝜔𝜔𝜔)

  .  (31) 
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     Figure 21 contains two diagrams, the left diagram shows the effect of pressure on 𝐺𝐺𝐺𝐺′(ω), and the right diagram 
the effect of pressure on 𝐺𝐺𝐺𝐺′′(ω). In both cases is shown material performance at 1Hz and 1000Hz. At frequency 
1 Hz and pressure 1 bar, the storage modulus is 𝐺𝐺𝐺𝐺′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 2.99𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, whereas at pressure 2000 
bar the storage modulus increases to 𝐺𝐺𝐺𝐺′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 4.07𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.  Hence, material becomes 1.4 
times stiffer. At the same frequency of 1Hz the loss modulus at pressure 1 bar is 𝐺𝐺𝐺𝐺′′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) =
0,29𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, whereas at pressure 2000 bar it rises to 𝐺𝐺𝐺𝐺′′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 0,92𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. This means that 
at elevated pressure the materials ability to dissipate energy increases 3.15 times.  
 
     At ω=1000 Hz, we observe analogous trends. At 1bar the storage modulus is 𝐺𝐺𝐺𝐺′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) =
6.899𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, whereas at the pressure 2000 bar the storage modulus becomes 𝐺𝐺𝐺𝐺′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) =
23.89𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, meaning that material stiffness is increased 3.46 times. At the same time the loss modulus at pressure 
1 bar is𝐺𝐺𝐺𝐺′′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 2.33𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, and at pressure 2000 bar it becomes 𝐺𝐺𝐺𝐺′′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 =
2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 12.65𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Thus, the material ability to dissipate energy has increased 5.41 times.  
 
     Of course, by further increasing material hydrostatic pressure one may increase the stiffness and damping 
properties much further, as it is demonstrated in continuation.  
 
     Stiffness of an isolation depends on its geometry and the storage modulus of a material from which it is built, 
whereas, its energy absorption capability is defined by isolation total volume and material loss modulus. Hence, 
if we keep the geometry and volume of an isolation constant both its stiffness and its energy absorption capability 
will depend on material storage and loss modulus only. In fact, the main interest is to understand how much (how 
many times) we can increase stiffness and energy absorption of an isolation by exposing the material from which 
it is made of to a selected hydrostatic pressure. Therefore, we introduce two coefficients, first, defining the increase 
of isolation stiffness by exposing it to a selected hydrostatic pressure p, relative to the isolation stiffness at the 
environmental pressure p0 = 0.1MPa: 
 

𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) =
𝐺𝐺𝐺𝐺′(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔)
𝐺𝐺𝐺𝐺′(𝑝𝑝𝑝𝑝0,𝜔𝜔𝜔𝜔)

  .  (30) 

 
and the second 
 

𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) =
𝐺𝐺𝐺𝐺′′(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔)
𝐺𝐺𝐺𝐺′′(𝑝𝑝𝑝𝑝0,𝜔𝜔𝜔𝜔)

  .  (31) 
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     Figure 21 contains two diagrams, the left diagram shows the effect of pressure on 𝐺𝐺𝐺𝐺′(ω), and the right diagram 
the effect of pressure on 𝐺𝐺𝐺𝐺′′(ω). In both cases is shown material performance at 1Hz and 1000Hz. At frequency 
1 Hz and pressure 1 bar, the storage modulus is 𝐺𝐺𝐺𝐺′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 2.99𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, whereas at pressure 2000 
bar the storage modulus increases to 𝐺𝐺𝐺𝐺′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 4.07𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃.  Hence, material becomes 1.4 
times stiffer. At the same frequency of 1Hz the loss modulus at pressure 1 bar is 𝐺𝐺𝐺𝐺′′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) =
0,29𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, whereas at pressure 2000 bar it rises to 𝐺𝐺𝐺𝐺′′(ω = 1𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 0,92𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. This means that 
at elevated pressure the materials ability to dissipate energy increases 3.15 times.  
 
     At ω=1000 Hz, we observe analogous trends. At 1bar the storage modulus is 𝐺𝐺𝐺𝐺′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) =
6.899𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, whereas at the pressure 2000 bar the storage modulus becomes 𝐺𝐺𝐺𝐺′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) =
23.89𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, meaning that material stiffness is increased 3.46 times. At the same time the loss modulus at pressure 
1 bar is𝐺𝐺𝐺𝐺′′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 = 1𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 2.33𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, and at pressure 2000 bar it becomes 𝐺𝐺𝐺𝐺′′(ω = 1000𝐻𝐻𝐻𝐻𝑧𝑧𝑧𝑧, 𝑝𝑝𝑝𝑝 =
2000𝑏𝑏𝑏𝑏𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏) = 12.65𝑀𝑀𝑀𝑀𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. Thus, the material ability to dissipate energy has increased 5.41 times.  
 
     Of course, by further increasing material hydrostatic pressure one may increase the stiffness and damping 
properties much further, as it is demonstrated in continuation.  
 
     Stiffness of an isolation depends on its geometry and the storage modulus of a material from which it is built, 
whereas, its energy absorption capability is defined by isolation total volume and material loss modulus. Hence, 
if we keep the geometry and volume of an isolation constant both its stiffness and its energy absorption capability 
will depend on material storage and loss modulus only. In fact, the main interest is to understand how much (how 
many times) we can increase stiffness and energy absorption of an isolation by exposing the material from which 
it is made of to a selected hydrostatic pressure. Therefore, we introduce two coefficients, first, defining the increase 
of isolation stiffness by exposing it to a selected hydrostatic pressure p, relative to the isolation stiffness at the 
environmental pressure p0 = 0.1MPa: 
 

𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) =
𝐺𝐺𝐺𝐺′(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔)
𝐺𝐺𝐺𝐺′(𝑝𝑝𝑝𝑝0,𝜔𝜔𝜔𝜔)

  .  (30) 

 
and the second 
 

𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) =
𝐺𝐺𝐺𝐺′′(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔)
𝐺𝐺𝐺𝐺′′(𝑝𝑝𝑝𝑝0,𝜔𝜔𝜔𝜔)

  .  (31) 

 

Figure 19: Storage modulus,  G’ ω), at p=1 bar and p=2000 bar

Figure 20:  Loss modulus G’’(ω) at  p=1 bar and p=2000 bar

Figure 21: Storage, G’(ω),  and loss, G’’(ω), modulus of TPU at  p=1 
bar and p=2000 bar at 1 HZ and 1000 Hz.
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frequencies. In fact, all mentioned diagrams present 
the same information, i.e., how much hydrostatic pres-
sure we need at a given frequency to obtain a selected 
increase of isolation stiffness and energy absorption.

Figure 22 shows Kk(p,ω) and  Kd(p,ω)  at four se-
lected pressure conditions, i.e., , 50, 100, 200 and 300 
MPa,  as functions of frequency within the frequency 
range  1-10000Hz.

From Fig. 22a one may observe that TPU 1190A 
stiffness is very sensitive to excitation frequency, par-
ticularly at highest pressure. At the same time exci-
tation frequency has much smaller effect on material 
damping, Fig. 22b, and this is so for all pressures. One 
also observes that pressure has significant effect on 
both, stiffness and damping. At highest pressure stiff-
ness increases for about 4 to 10 times, and its damping 
for about 10 to 16 times, depending on the frequency 
of excitation. It is also interesting to observe that at 
highest pressure damping start to decrease as soon as 
the excitation frequency is higher than 1000Hz. 

The effect of pressure is seen more clearly in Fig. 
23, which shows Kk(p,ω) and  K(p,ω)  at four select-
ed excitation frequencies, i.e., 1, 10, 1000 and 10000 

Hz, as functions of pressure, within the range up to 
300 MPa. The two figures, Figs. 22 and 23, essentially 
show the same information just presented in a differ-
ent way. However, the different “angle of observation” 
provides quite different physical inside.

    From Fig. 23b one sees that damping monotoni-
cally increases with applied hydrostatic pressure at all 
frequencies almost equally up to 200MPa when, for the 
highest excitation frequency, the slope of the increase 
declines. The improvement of damping relative to the 
damping at reference pressure, caused by hydrostatic 
pressure, is the largest at 100Hz excitation, followed 
by 1000Hz, 1Hz and 10000Hz. 

Quite different is true for stiffness, displayed in 
Fig. 23a. Here one observes that stiffness monotoni-
cally increases with the applied hydrostatic pressure 
for all excitation frequencies, and the largest improve-
ment is observed at the highest excitation frequency, 
and the smallest for the excitation of 1Hz. One also 
observes that the largest “gap” is observed between the 
excitation frequencies 1Hz and 100Hz.

All these observations confirm that the effect of 
pressure on stiffness and damping is nonlinear and 
need to be carefully investigated for each particular 
material to be used for the new generation damping 
elements. These observations also confirm that vibra-
tion isolation based on the patented dissipative granu-
lar high-pressure technology can surpass the existing 
solutions for several orders of magnitude and allows 
new generation engineering solutions in different areas 
of application.

5. Discussion on possible engineering applications 

As mentioned in the introduction, in existing engi-
neering solutions any improvement of material damp-
ing would “soften” the material, and any improvement 
of stiffens would either lead to bigger dimensions of 
a loaded body, or to lower damping of the used ma-
terial. Any simultaneous improvement of damping 
and stiffness, as offered by the new dissipative gran-
ular high-pressure technology, would therefore have 
the potential for new engineering applications, which 
would not be achievable with the currently known 
technologies. We list a few examples to demonstrate 
the wide range of possible new applications:

•	 High-energy absorption in automotive indus-
try where dampers are needed to reduce the 
peak forces under impact loading or reduce vi-
brations caused by non-harmonic excitations. 
Currently, any improvement of damping 
would lead to higher volume of the used damp-
er. Newly developed dampers based on the 
high-pressure technology combine high ener-
gy absorption with high stiffness and therefore 
allow for small build-in volume. They exhibit 
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which defines an increase of isolation energy absorption (damping) obtained by exposing the analyzed TPU to a 
selected hydrostatic pressure. Comparison is made within the frequency range (1 - 10000Hz), which is of main 
interest for an impact and vibration isolation. The results are shown in two different forms: (i) 𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) and 
𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) as functions of frequency, for four different pressures; and (ii) 𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) and 𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) as functions of 
hydrostatic pressure, for four different frequencies. In fact, all mentioned diagrams present the same information, 
i.e., how much hydrostatic pressure we need at a given frequency to obtain a selected increase of isolation stiffness 
and energy absorption. 
 
     Figure 22 shows K𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) and  Kd(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔)  at four selected pressure conditions, i.e., , 50, 100, 200 and 300 MPa,  
as functions of frequency within the frequency range  1-10000Hz. 
 

Figure 22: (a) 𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) and (b) 𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) of 1190A as functions of frequency for four selected pressures 
 

 
 
     From Fig. 22a one may observe that TPU 1190A stiffness is very sensitive to excitation frequency, particularly 
at highest pressure. At the same time excitation frequency has much smaller effect on material damping, Fig. 22b, 
and this is so for all pressures. One also observes that pressure has significant effect on both, stiffness and 
damping. At highest pressure stiffness increases for about 4 to 10 times, and its damping for about 10 to 16 times, 
depending on the frequency of excitation. It is also interesting to observe that at highest pressure damping start to 
decrease as soon as the excitation frequency is higher than 1000Hz.  
 
     The effect of pressure is seen more clearly in Fig. 23, which shows K𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) and  𝐾𝐾𝐾𝐾(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔)  at four selected 
excitation frequencies, i.e., 1, 10, 1000 and 10000 Hz, as functions of pressure, within the range up to 300 MPa. 
The two figures, Figs. 22 and 23, essentially show the same information just presented in a different way. 
However, the different “angle of observation” provides quite different physical inside.    
 

Figure 23: (a) 𝐾𝐾𝐾𝐾𝑘𝑘𝑘𝑘(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) and (b) 𝐾𝐾𝐾𝐾𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝,𝜔𝜔𝜔𝜔) of 1190A as functions of hydrostatic pressure at four selected 
frequencies 

 

 22 

 
     From Fig. 23b one sees that damping monotonically increases with applied hydrostatic pressure at all 
frequencies almost equally up to 200MPa when, for the highest excitation frequency, the slope of the increase 
declines. The improvement of damping relative to the damping at reference pressure, caused by hydrostatic 
pressure, is the largest at 100Hz excitation, followed by 1000Hz, 1Hz and 10000Hz.  
 
     Quite different is true for stiffness, displayed in Fig. 23a. Here one observes that stiffness monotonically 
increases with the applied hydrostatic pressure for all excitation frequencies, and the largest improvement is 
observed at the highest excitation frequency, and the smallest for the excitation of 1Hz. One also observes that 
the largest “gap” is observed between the excitation frequencies 1Hz and 100Hz. 
 
     All these observations confirm that the effect of pressure on stiffness and damping is nonlinear and need to be 
carefully investigated for each particular material to be used for the new generation damping elements. These 
observations also confirm that vibration isolation based on the patented dissipative granular high-pressure 
technology can surpass the existing solutions for several orders of magnitude and allows new generation 
engineering solutions in different areas of application. 
  
 
5. Discussion on possible engineering applications  

 
    As mentioned in the introduction, in existing engineering solutions any improvement of material damping 
would “soften” the material, and any improvement of stiffens would either lead to bigger dimensions of a loaded 
body, or to lower damping of the used material. Any simultaneous improvement of damping and stiffness, as 
offered by the new dissipative granular high-pressure technology, would therefore have the potential for new 
engineering applications, which would not be achievable with the currently known technologies. We list a few 
examples to demonstrate the wide range of possible new applications: 
• High-energy absorption in automotive industry where dampers are needed to reduce the peak forces under 
impact loading or reduce vibrations caused by non-harmonic excitations. Currently, any improvement of damping 
would lead to higher volume of the used damper. Newly developed dampers based on the high-pressure 
technology combine high energy absorption with high stiffness and therefore allow for small build-in volume. 
They exhibit almost instantaneous response- and recovery time under vibrational and impact loading which is 
needed for safety applications.  

 

Figure 22: (a) Kk(p,ω) and (b) Kd(p,ω) of 1190A as functions of fre-
quency for four selected pressures

Figure 23: (a) Kk(p,ω) and (b) Kd(p,ω) of 1190A as functions of hy-
drostatic pressure at four selected frequencies
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almost instantaneous response- and recovery 
time under vibrational and impact loading 
which is needed for safety applications. 

•	 The use of the new dampers based on high 
pressure technology would substantially re-
duce vibrations, size and weight of currently 
used shock absorbers in the axels of vehicles. 
Particularly for heavy duty trucks the new 
dampers might replace currently used air sus-
pensions. 

•	 Passive car bumpers based on new technology 
will absorb more energy under impact loading 
and might be used for safety reasons in auton-
omous driving cars when getting out of con-
trol. 

•	 Damper applications in foundations for heavy 
machines and railroads. The unique combina-
tion of high damping and high stiffness of the 
new dampers allows for applications where 
heavy loads or forces must be transferred into a 
fundament, yet high shock absorbance and vi-
bration damping is needed. Such applications 
are the foundlings of heavy forge hummers or 
heavy sheet steel presses where repeating im-
pact occurs.

•	 For high speed trains or high-speed freight 
trains high forces must be supported while vi-
brations must be minimized by rail carrying 
sleeper (ref patent). Heavy loads can be sus-
tained by hydrostatically loaded polymers.

•	 Application of dampers for earthquake protec-
tion. As can be seen from the failure envelope 
of pressurized polymers, uniaxial- or two-di-
mensional pressure loading will cause shear 
failure of polymers, whereas three-dimension-
al pressure will be sustained up to extreme-
ly high loads. The reason that polymers can 
sustain almost infinitely high pressure allows 
their application for the protection of high-rise 
buildings, towers and bridges against s-waves 
emitted by earthquakes.  

It must be stated however, that the proper selec-
tion of the size and geometry of the damper device, the 
choice of the proper polymeric material and the choice 
of the applied hydrostatic preloading of the damping 
element still remains to the skill and responsibility of 
the design engineer.
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