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Abstract

A wide variety of natural and syn-
thetic polymers have applications in 
biomedical devices. They are usu-
ally processed by melting or by using 
organic solvents, but these methods 
may affect the efficiency of incorpo-
rating delicate bioactive compounds, 
such as drugs and proteins, during 
polymer processing. These short-
comings can be avoided by using 
supercritical fluids as processing 
solvents or plasticizers. Supercriti-
cal carbon dioxide (scCO2) has at-
tracted attention for its potential as 
a plasticizer in polymer processing. 
It is used for obtaining microspheres, 
microcapsules, foams, membranes 
and polymer/drug composites. The 
method offers important advantages 
over other techniques, including the 
absence of harmful organic solvents, 
the mild processing conditions, and 
the ready control of particle and 
foam morphology simply by varying 

Izvleček

Za pripravo biomedicinskih pripomo~- 
kov se uporabljajo razli~ni sinteti~ni 
in naravni polimeri, ki jih je obi~ajno 
potrebno staliti ali procesirati z upo-
rabo organskih topil. Te tradicional-
ne metode procesiranja lahko vplivajo 
na u~inkovitost vklju~evanja bioak-
tivnih komponent, kot so zdravila in 
beljakovine, v polimerno strukturo. 
Tem slabostim se lahko izognemo z 
uporabo superkriti~nih fluidov kot to-
pil ali plastifikatorjev. Kot potencialni 
plastifikator pri procesiranju polime-
rov je zanimiv predvsem superkriti~ni 
ogljikov dioksid (scCO2), in sicer za 
pridobivanje mikrokroglic, mikro-
kapsul, pen, membran in kompozi-
tov polimer/droga. Metoda ima pred 
ostalimi tehnikami pomembne pred-
nosti, saj ne vklju~uje uporabe {ko-
dljivih organskih topil, procesiranje 
poteka pri blagih pogojih, hkrati pa 
omogo~a enostavno kontrolo morfo-
logije delcev in pen preprosto s spre-
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Introduction

Polymers are the most widely used materials in bio-
medical applications. They offer advantages (highly 
versatile, easily obtained and processed, similar to 
natural compounds) which recommend them for ap-
plications in all domains of medicine, such as im-
plants, grafts, medical equipment, drug delivery sys-
tems and tissue engineering scaffolds.

Material & Metods 

A wide variety of natural and synthetic polymers 
has been investigated for drug targeting and release 
or resorbable or non-resorbable implants, including 
protein-based polymers, polysaccharides, polyesters, 
polyanhydrides, polyamides, silicones, acrylic poly-
mers, polyorthoesters, polyurethanes, polyacetals, 
homopolymers, copolymers and blends [1-4]. A few 
examples of the synthetic polymers used as biomate-
rials are presented in Figure 1.

RESULTS

Processing of polymeric biomaterials.
The traditional methods for polymer processing in-
volve either high temperatures, necessary for melting 
or viscosity reduction, or hazardous volatile organic 
solvents (VOCs) and chlorofluorocarbons (CFCs). 
These methods may affect the incorporation of deli-
cate bioactive compounds during processing, since de-

naturation may occur upon exposure to solvents, high 
temperature or shear stresses [5]. Therefore, extensive 
research is focussing on seeking new and cleaner meth-
ods for processing polymeric biomaterials.
One such method is the use of supercritical fluids 
as processing solvents or plasticizers. A supercriti-
cal fluid is a substance for which both pressure and 
temperature are above the critical values [6]. The 
critical state denotes the conditions at which the 
phase boundary between liquid and gas ceases to 
exist. The special combination of gas-like viscosity 
and diffusivity, and liquid-like density and solvating 
properties, of a supercritical fluid makes it an excel-
lent solvent for various applications [5].
Supercritical carbon dioxide (scCO2) is the preferred 
choice for these applications. It is a clean, versatile sol-
vent and a promising alternative to organic solvents 
and chlorofluorocarbons. It is non-toxic, non-flamma-
ble, chemically inert, environmentally safe and inex-
pensive. Its supercritical conditions (Tc = 304.1 K, Pc 
= 7.38 MPa) are easily attained and it can be removed 
from a system by simple depressurization [5, 6].
ScCO2 is a good solvent for many low molecular 
weight compounds and a few polymers, but it is gen-
erally a very poor solvent for high molecular weight 
polymers. However, its solubility in many polymers 
is substantial, being influenced by temperature, pres-
sure and, sometimes, by weak interactions with the 
groups in the polymer.
Dissolved CO2 causes a reduction in the viscosity of 
the polymers by increasing their free volume. Thus 

minjanjem tlaka in temperature. ScCO2 hkrati predstavlja 
tudi alternativo obi~ajnim postopkom sterilizacije medicin-
skih pripomo~kov. Zahteve na podro~ju biomaterialov so 
specifi~ne in postajajo s ~asom vedno strožje, zato pred-
stavlja tehnika procesiranja polimerov s scCO2 obetavno 
alternativo klasi~nim metodam tkivnega inženiringa ter 
metodam za pridobivanje nosilcev, ki omogo~ajo kontroli-
rano spro{~anje zdravil.itor replikacije Pseudorabies virusa 
v okuženih celicah.

pressure and temperature. ScCO2 may also represent a 
viable alternative to conventional sterilization processes 
for medical devices. Because the requirements of the field 
of biomaterials are specific and increasing with time, the 
technique of polymer processing with scCO2 may repre-
sent a promising alternative to classical methods of ob-
taining controlled delivery systems and tissue engineering 
scaffolds.
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the polymers are plasticized, allowing processing at 
lower temperatures. The plasticization is confirmed 
by a decrease in the glass transition and melting tem-
perature of the polymer [6]. The supercritical fluid 
also alters the physical properties of the polymers, 
such as density, diffusivity and swollen volume.
ScCO2 has been used successfully in polymer synthe-
sis and (as a solvent, an antisolvent or plasticizer) in 
polymer processing for microcellular foaming, parti-
cle production, impregnation of polymers, obtaining 
polymer composites and solvent extraction.

ScCO2 as the polymerization environment
Polymerization with scCO2 has been studied for 
the production of polycarbonates [6] and polyesters 
[7-12], among other things. The main advantage of 
using CO2 is the reduced viscosity of the polymer 
during synthesis, which decreases the mass transfer 
resistance, leading to an increased conversion and 
molecular weight [6].

Porous materials
In the domain of polymeric foams, scCO2 has found 
an application as a blowing agent for obtaining 
polymeric devices with controlled porosity [5, 13-
24]. The replacement of traditional blowing agents, 
such as CFCs, VOCs and hydrochlorofluorocarbons 
(HCFCs), with CO2 has proven beneficial for the 
biocompatibility of the final medical devices. More-
over, supercritical fluids offer the possibility of con-
trolling the size and distribution of the pores by sim-
ple variation of the processing parameters (pressure, 
temperature and depressurization rate) [5]. Howev-
er, despite the obvious advantages, there are some 
limitations. The control over the internal scaffold 
architecture cannot approach that offered by 3D 
printing techniques, and this indicates the need for 
further process optimization [5].

Microparticles
Extensive research has focused on the use of scCO2 
for obtaining particles for drug delivery applications. 
For this purpose, pharmaceuticals alone [22, 25-29] 
and in combination with polymeric supports [10, 
30-36] have been processed.

When compared to the traditional methods for ob-
taining particles – oil-in-water (o/w), water-oil-wa-
ter (w/o/w) double emulsion, hydrous water-oil-oil, 
water-oil-oil-oil (w/o/o/o), solid-oil-water (s/o/w), 
anhydrous solid-oil-oil-oil (s/o/o/o), spray drying – 
particle production using scCO2 as a solvent or an 
antisolvent offers two major advantages.
The first advantage is better control of particle size, 
particle size distribution and morphology. This can 
be achieved by tuning process parameters such as 
the amount of dissolved CO2, temperature, pressure, 
nozzle diameter and depressurization rate. Control 
over drug or delivery system particle size is essential 
for good targeting and for the efficacy of the active 
compound [22].
The second advantage is not needing an organic 
solvent or to efficiently remove and recover a sol-
vent. Supercritical fluids provide a clean alternative 
to traditional techniques that employ toxic organic 
solvents or elevated temperatures. This has allowed 
sensitive bioactive molecules, such as proteins, 
drugs, and nucleic acids, to be introduced during the 
polymer processing stage [22].
Existing methods that use scCO2 as a solvent or an 
antisolvent to obtain drug or polymer-drug particles 

Figure 1. Examples of polymeric biomaterials
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over, neither the polymer nor the reinforcing agent 
need to be soluble in scCO2. One can also control 
the morphology of the final product (filler distribu-
tion, pore size and distribution) and obtain high 
loadings of reinforcing agent [23].

DISCUSSION.

Supercritical carbon dioxide has attracted particular 
attention due to its tremendous potential as a plas-
ticizer in polymer processing. Of particular interest 
is the use of supercritical fluids for processing poly-
mers destined for biomedical applications (as micro-
spheres, microcapsules, foams, membranes and poly-
mer/drug composites). The method offers important 
advantages over other techniques in terms of the ab-
sence of harmful organic solvents or, when necessary, 
the efficient extraction of solvents and impurities; 
the mild processing conditions, which do not alter 
the active compound; and easy control of particle 
and foam morphology by simply varying the pressure 
and temperature. Because of the highly specific and 
increasing requirements of the field of biomaterials, 
these techniques may represent a promising alterna-
tive to classical methods of obtaining controlled de-
livery systems and tissue engineering scaffolds.

are outlined in Table 1 and include rapid expansion 
of supercritical solutions (RESS) [5, 22, 26, 32, 37], 
gas antisolvent crystallization (GAS) [22, 26, 32], 
supercritical antisolvent precipitation (SAS) [33, 
38, 39], precipitation by compressed antisolvent 
(PCA) [22, 40], solution enhanced dispersion by su-
percritical fluid (SEDS) [41, 42], aerosol solvent ex-
traction systems (ASES) [22, 32, 43, 44], supercriti-
cal assisted atomization (SAA) [22, 45] and obtain-
ing particles from gas-saturated solutions (PGSS) [5, 
22, 23, 28-30, 33].

Composite materials
Another use recently proposed for scCO2 is as a mix-
ing environment for composite materials. Polymer 
composites containing inorganic nanoparticles are 
attracting much attention in the paint, cosmetic 
and chemical industries and especially as biomedical 
applications [23]. The method involves mixing the 
polymer matrix and the ceramic component in the 
presence of scCO2. Under these conditions the poly-
mer is plasticized and has lower viscosity, and, by 
high shear mixing, the insoluble particles can be ef-
ficiently incorporated into the matrix. No additional 
co-solvents are required and the entire process can 
be carried out at near ambient temperature. More-

Table 1. Comparison of supercritical processes for microparticle formation; RESS, rapid expansion of supercritical 
solutions; GAS, gas antisolvent crystallization; SAS, supercritical antisolvent precipitation; PCA, precipitation by com-
pressed antisolvent; SEDS, solution enhanced dispersion by supercritical fluid; ASES, aerosol solvent extraction system; 
SAA, supercritical assisted atomization; PGSS, particles from gas-saturated solutions; SCF, supercritical fluid.

RESS GAS/SAS/PCA SEDS/ASES/SAA PGSS

The substrate is dissolved 
in the SCF; the solution 

is subjected to rapid 
expansion through a 
nozzle, which causes 
supersaturation and 

particle precipitation.

The substrate is dissolved 
in an appropriate solvent; 

SCF (antisolvent) is 
added under high pressure; 

the depressurization 
causes supersaturation of 
the solution and solute 

precipitation.

The substrate, dissolved 
in an appropriate solvent, 

is introduced through 
a nozzle into the SCF 

antisolvent; the solvent 
is extracted and the 

substrate precipitates as 
droplets. 

The SCF is dissolved 
in the melted substrate, 

resulting in viscosity 
reduction; the gas-

saturated solution is 
expanded through a 

nozzle, to induce particle 
precipitation.

Gas quantity High Medium Medium Low

Organic solvent Absent Present Present Absent

Pressure High Medium Medium Medium

Separation of 
gas Easy Easy Easy Easy
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