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ABSTRACT 
 
Pesticide use remains a problem in agriculture, contaminating natural ecosystems and affecting bees. Fungicides have been widely 
used worldwide, and honey bees can bring contaminated pollen and nectar to the colony, exposing the larvae. Studies on larval 
exposure to fungicides are still rare. Therefore, this work aimed to evaluate the effects of larval exposure to the fungicide 
picoxystrobin on biological parameters and cellular stress in the fat body. The larvae were single exposure on the fourth day (D4) 
to picoxystrobin at concentrations of 5 ng a.i./μL (PCX5), 45 ng a.i./μL (PCX45), 135 ng a.i./μL (PCX135), and 400 ng a.i./μL (PCX400). The 
effects on larval and pupal mortality, pupation rate, and emergence were evaluated. Additionally, cellular stress in the fat body was 
assessed in newly emerged bees. Exposure to PCX400 increased larval mortality by 26% and reduced the emergence of adult bees. 
The other concentrations did not affect larval and pupal mortality, or pupation and emergence rates. A cytotoxicity effect was 
observed in newly emerged bees from PCX400, indicated by positive immunolabeling of HSP70. Thus, a single exposure to 
picoxystrobin can impair larval development, induce a cellular stress response, and may interfere with colony dynamics. 
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INTRODUCTION 
 

Brazil is the largest country in South America and is 
recognized as an essential food supplier in global agriculture. 
It produces a substantial amount of the food consumed 
worldwide (Calil and Ribera, 2019). The country has vast 
arable lands, abundant resources, and a favorable climate, 
making the cultivating of many crops feasible (Martinelli et 
al., 2010). The most cultivated crops include soybeans, 
sugarcane, maize, coffee, oranges, rice, cotton, beans, and 
tobacco (Bordonal et al., 2018; Toloi et al., 2021; Valdes, 2022), 
contributing to Brazil achieving US$ 125 billion in 
agricultural export value in 2021 (Valdes, 2022). Even with 
great importance in agriculture, Brazil still faces internal 
challenges such as inefficient agricultural sub-sectors, land 
distribution inequality, environmental concerns, and the 

 
need for sustainable practices (Martinelli et al., 2010). Among 
these challenges, the use of pesticides has raised concerns 
among researchers regarding the damage to human health 
and the risk to the environment, as the country is one of the 
top consumers of pesticides worldwide (Tang et al., 2022). 

Many studies have warned about the harmful effects of 
pesticides on human health and the potential risks of 
related diseases (Paumgartten, 2020; Islam et al., 2021; Lopes-
Ferreira et al., 2022). Insecticides, herbicides, and fungicides 
are the most frequently used pesticides in Brazil (Lopes-
Ferreira et al., 2022), and their usage has also been associated 
with terrestrial and aquatic contamination (Daam et al., 
2019; Fernandes et al., 2020; Guarda et al., 2020; Brovini et al., 
2021). Additionally, the impact of pesticide use extends to 
pollinators, e.g., bees, posing significant threats to 
ecosystems and biodiversity (Goulson et al., 2015; Sgolastra et 
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al., 2020), and efforts must be made to mitigate this. 
The global bee population demonstrates high diversity, 

with over 20,000 described species (Orr et al., 2021), and Brazil 
significantly contributes to this richness with more than 
3,000 bee species (Silveira et al., 2002). However, Brazil's most 
well-known bee species is the poly-hybrid Africanized Apis 
mellifera (non-native), resulting from crossbreeding 
European and African subspecies (Sheppard et al., 1991). 
These managed bees have a high defense capability, remain 
active in foraging for extended periods, and are more 
efficient in resource collection compared to European 
subspecies (Winston and Katz, 1982; Malaspina and Stort, 
1987). Furthermore, A. mellifera serves as a model for 
pesticide regulation in Brazil (Cham et al., 2017). Pesticide use 
in the country, however, is closely linked to the weakness 
and collapse of Africanized A. mellifera colonies (Pires et al., 
2016). 

Among pesticides, fungicides are widely used worldwide 
(Gikas et al., 2022). Nevertheless, studies on the effects of 
fungicides on non-target organisms receive less attention 
compared to insecticides and herbicides (Wood and Goulson, 
2017; Zubrod et al., 2019). This is concerning, as field 
concentrations of fungicide residues may exceed levels 
considered safe by regulatory agencies (Rondeau and Raine, 
2022). Cullen et al. (2019) suggest that further research is 
needed, employing diverse approaches, various species, and 
a wide range of compounds to reduce the current knowledge 
gap.  

Picoxystrobin (C18H16F3NO4) is a fungicide from the 
strobilurin group; it acts by inhibiting the mitochondrial 
respiration (halting the production of ATP) of fungi (Bartlett 
et al., 2002). Nevertheless, previous studies have revealed that 
picoxystrobin can also be harmful to amphibians (Li et al., 
2016), fish (Jia et al., 2018), soil animals (Schnug et al., 2015), 
and bees (Domingues et al., 2017; Batista et al., 2020). Adult 
workers of Africanized A. mellifera exposed continuously to 
the fungicide picoxystrobin had their lifespan reduced by 
51.76%, along with an overload of the hepato-nephrocitic 
system (Domingues et al., 2017). Cytotoxic effects of 
picoxystrobin exposure after 24, 48, 72, and 96 hours were also 
observed in the midgut of Africanized A. mellifera, which can 
affect the individual performance of bees and may impact 
the colony as a whole (Batista et al., 2020). 

In the environment, bees can be exposed to 
picoxystrobin and other strobilurins through direct spray 
application or by residues found in pollen, nectar, and water 
that they collect (Pettis et al., 2013; Simon-Delso et al., 2014; 
Samarghandi et al., 2017; Rondeau and Raine, 2022). This 
exposure may pose a potential risk to honey bee larvae as 
well. Additionally, picoxystrobin has been detected in crops 
visited by A. mellifera (Rondeau and Raine, 2022). 

Benuszak et al. (2017) highlighted the need to use larvae 
 
 

in studies on honey bees' exposure to pesticides. From this 
perspective, it is essential to study honey bee larvae, as the 
ingestion of fungicide residues can cause stress, disturb their 
post-embryonic development, and potentially weaken the 
colony. Furthermore, this stress can activate cellular defense 
mechanisms and induce the expression of heat shock 
proteins (HSPs) (Tkáčová and Angelovičová, 2012). According 
to Silva et al. (2006), HSPs are valuable cellular biomarkers 
for pesticide exposure. 

Based on the information mentioned above and 
considering that research assessing the effects of fungicides 
on A. mellifera larvae is still scarce compared to studies on 
insecticides (Aupinel et al., 2007; Silva et al., 2015; Tavares et 
al., 2015; Dai et al., 2017; Friol et al., 2017; Tavares et al., 2019; 
Tesovnik et al., 2020; Begna et al., 2023; Carneiro et al., 2023; 
Ke et al., 2023), although adverse effects have been reported 
(Simon-Delso et al., 2017; Tadei et al., 2019; Tadei et al., 2020; 
Zhang et al., 2020; Domingues et al., 2021). The present study 
aimed to evaluate the effects of larval exposure to the active 
ingredient of fungicide picoxystrobin through biological 
parameters. The response to cellular stress in the fat body 
was evaluated by detection of HSP70. It is crucial to 
determine whether exposure to picoxystrobin adversely 
affects larval development and induces stress responses, as 
this can help predict possible negative effects on honey bee 
colonies and their ecological and economic roles. In addition, 
it can guide regulatory decisions on fungicide use in 
agriculture and support strategies to protect bees and other 
pollinators. 
 

MATERIALS AND METHODS 
 

Colonies of Africanized A. mellifera 
 

The honey bee larvae used in the present study were 
sampled from three different healthy colonies at an apiary 
located in the rural area of Piedade, São Paulo State 
(23°37′5.506"S, 47°29′7.926"W). The physiological status of the 
colonies were known, and no chemical treatments was 
applied to manage the colonies before or during the study 
period. In Brazil, research on invertebrates does not require 
animal ethics approval. 
 
Chemicals: fungicide picoxystrobin and insecticide 
dimethoate 
 

The picoxystrobin Pestanal® analytical standard (CAS 
number 117428-22-5, ≥ 98.0%) and dimethoate Pestanal® 
analytical standard (CAS number 1219794-81-6, ≥ 95.0%) were 
used for the larval toxicity tests. These standards were 
purchased from the Pestanal® product line, a registered 
trademark of Merck KGaA, Darmstadt, Germany.  
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Honey bee larval toxicity test, single exposure to 
picoxystrobin 

 
The methodology followed the Organisation for Economic 
Co-operation and Development No. 237 protocol (OECD, 2013). 
Initially, a brood comb from each of the three colonies was 
collected and taken to the “Laboratory of Ecotoxicology and 
Environmental Integrity Analysis (LEIA)” at the “Federal 
University of São Carlos (UFScar)” in Sorocaba, São Paulo 
State, where the larval bioassay was performed. 

The first instar larvae were individually transferred to 
sterilized polystyrene grafting cells (1 x 1 x 1 cm) with a wetted 
paintbrush (number 0), with each cell holding 20 µl of the 
standardized artificial diet A. The diet was composed of 50% 
by weight of fresh royal jelly and 50% by weight of an 
aqueous solution containing D-(+)-glucose (≥99.5%), D-(−)-
fructose (≥99%), and yeast extract, as described by Aupinel et 
al. (2005). The polystyrene grafting cells were placed in cell 
culture plates (48 wells), each containing a piece of cotton 
soaked in 500 μl of sterilization solution (0.2% w/v 
methylbenzethonium chloride) enhanced with 15% w/v 
glycerol at the bottom of the wells. The plates containing the 
larvae were then placed into an acrylic desiccator cabinet 
(Thermo Scientific™ Nalgene™, 178 x 305 x 305 mm), where 
beakers containing a saturated solution of potassium 
sulphate (K2SO4) were also added to maintain humidity. The 
acrylic desiccator cabinet was kept in an incubator set at 
34±2 ºC, with a relative humidity of 90±5 %, under dark 
conditions. 

The larvae were fed once a day until the sixth day (D6), 
and the diets and volumes were adapted at different stages 
of development, as described by Aupinel et al. (2005). On the 
fourth day of the experiment (D4), the larvae were single 
exposed to picoxystrobin concentrations (Fig. 1). First, a stock 
solution of picoxystrobin (1000 ng a.i./μL) was prepared in 
autoclaved distilled water (60%) and acetone (40%) and 
diluted serially to obtain the working concentrations of 5, 45, 
135, and 400 ng a.i./μL. Since the fungicide picoxystrobin is 
not completely soluble in water (3.1 mg/L at 20 °C), acetone 
was used as an organic solvent, and a solvent control (CAC) 
was also added following the protocol described by the OECD 
No. 237 (2013), not exceeding 5% of the final diet volume (1.5 
μL of acetone for a diet volume of 30 μL on D4). The control 
group (CTL) received only the larval diet without adding 
additional chemicals. Dimethoate (DMT) was used as a toxic 
reference chemical (8.8±0.5 μg a.i./larva) to ensure the 
reliability of the experiment (OECD, 2013). 
 

 
 

D – day; PCX – picoxystrobin 
 

Figure 1: Schematic representation of the larval stage feeding 
period adapted from OECD No. 237 protocol for larval toxicity 
test, single exposure (OECD, 2013). The diets A, B, and C were 
based on Aupinel et al. (2005).  
 

On the day of the single exposure (D4), the honey bee 
larvae were divided into the following experimental groups: 
picoxystrobin at 5 ng a.i./μL (PCX5), picoxystrobin at 45 ng 
a.i./μL (PCX45), picoxystrobin at 135 ng a.i./μL (PCX135), 
picoxystrobin at 400 ng a.i./μL (PCX400), control (CTL), 
solvent control (CAC), and dimethoate positive control 
(DMT). Fourteen honey bee larvae were used from each of 
the three selected healthy colonies per experimental group. 
This resulted in 42 larvae per experimental group, meeting 
the OECD No. 237 (OECD, 2013) requirement of a minimum of 
36 honey bee larvae per group. The specific concentrations 
used in this study were based on preliminary studies 
conducted in the LEIA at UFSCar. 
 

Evaluation of the biological effects of single 
exposure 
 

After pesticide exposure on the fourth day (D4), the larval 
mortality rate of all experimental groups was monitored for 
up to 72 hours (D5-D7). The pupation mortality and pupation 
rates were monitored from the eighth to the fifteenth day 
(D8-D15), and the cumulative emergence rate was recorded 
on the twenty-second day (D22).  
 

Immunofluorescence "in totum" for HSP70 
detection 
 

Three newly emerged bees (up to 48 hours old) that had been 
exposed to picoxystrobin during the larval stage were 
sampled from CTL, CAC, and PCX400 groups. They were then 
anesthetized by exposure to a low temperature (4 °C) for one 
minute and dissected in a sodium chloride (0.9%) using a 
stereomicroscope (Leica EZ4 HD) to remove the dorsal vessel 
along with the parietal fat body. 
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The dissected organs from all selected groups were 
placed individually on positively charged silanized slides 
(ImmunoSlide, EasyPath), where drops of the fixative 
solution (paraformaldehyde 4% in phosphate-buffered 
saline (PBS), 0.1 mol L1, pH 7.4) were added for 24 hours at 4 °C 
and covered with a plastic coverslip to spread the solution. 
The entire procedure was carried out in a black incubation 
tray for immunohistochemistry (EasyPath). After the 
fixation period, the slides containing the organs were 
washed in PBS and then incubated for 10 minutes in PBS 
with 0.05% Tween® 20 (pH 7.4). The organs were subsequently 
permeabilized using a solution of 0.5% Triton X-100 in PBS 
for 30 minutes, followed by three washes in PBS with 0.05% 
Tween® 20, with a five-minute incubation during the final 
wash. Nonspecific antigenic sites were blocked using PBS 
with 0.05% Tween® 20 and 3% bovine serum albumin (BSA) 
solution for one hour at room temperature. The slides with 
organs were then washed three times in PBS with 0.05% 
Tween® 20 and incubated with a primary antibody solution 
(monoclonal anti-heat shock protein 70, antibody produced 
in mouse, Clone BRM-22, H5147 - Sigma-Aldrich™), diluted 
1:100, for five days in a black incubation tray in the fridge at 
4 ºC. After incubation with the primary antibody, the slides 
containing the organs were washed in PBS with 0.05% 
Tween® 20 for 30 minutes. Incubation was then carried out 
with the secondary antibody (rabbit anti-mouse IgG (H+L) 
cross-adsorbed, conjugated with Alexa Fluor™ 488, Invitrogen 
- Thermo Fisher Scientific, A-11059), diluted 1:100, for one 
hour at room temperature. Following this incubation, the 
slides were washed three times in PBS buffer and mounted 
with an aqueous fluorescence mounting medium (Dako) 
using glass coverslips. Two negative reaction controls were 
also performed (without primary and secondary antibodies). 

Immunofluorescence analyses were conducted to 
localize HSP70 using a laser scanning confocal microscope 
(LEICA TCS-SP8) with Leica Application Suite X software (LAS 
X, version 3.5.5), following the configurations described by 
Domingues et al. (2017). Three slides, each prepared from a 
single bee, were analyzed per group. 

 

Statistical analysis 
 

Data analysis was performed using R software, version 4.2.2. 
Survival data from larval and pupal stages were analyzed 
using the Log-rank test from the “survival” package 
(Therneau, 2021). The occurrence of bee pupation and 
emergence for each individual was computed up to the 
fifteenth day (D15) and twenty-second day (D22), respectively. 
Then, the pupation and emergence events were analyzed 
using generalized linear models with quasibinomial and 
binomial distributions, with the experimental groups as 
independent variables. The goodness of fit of the statistical 
models to the data was checked by half-normal plots (Moral 
et al., 2017). The pupation and emergence proportions of each 

experimental group were contrasted with the control group 
using estimation of effect size analysis with 5,000 resamples 
from the “dabestr” package (version 2023.9.12, Ho et al., 2019) 
generating Cohen’s h and p-value from a two-sided 
permutation t-test.   
 
RESULTS  
 
Biological effects of a single exposure to 
picoxystrobin 
 
The larval exposure to pesticides, considering DMT, increased 
the mortality of Africanized honey bees during the larval 
stage (χ²=109, df=6, p<0.001), but did not influence the survival 
probability during the pupal stage (χ²=1.3, df=5, p=0.9), as 
shown in Figure 2. During the larval stage, larvae from the 
CAC, PCX5, PCX45, and PCX135 groups showed similar survival 
probabilities to the CTL group (p>0.91). Exposure to PCX400 
increased larval mortality by 26% compared to the CTL 
group (p=0.013).. The highest larval mortality was observed in 
the DMT group, which reduced survival probability by 69% 
compared to the CTL group (p<0.001), validating the larval 
toxicity test according to the OECD No. 237 protocol (OECD, 
2013).  
 

 
 

CTL – Control; CAC – solvent control; PCX5 – picoxystrobin at 5 ng 
a.i./μL; PCX45 – picoxystrobin at 45 ng a.i./μL; PCX135 – picoxystrobin 
at 135 ng a.i./μL; PCX400 – picoxystrobin at 400 ng a.i./μL; DMT – 
dimethoate as a positive control. n = 42 honey bee larvae per 
experimental group. 
 

Figure 2: Survival probability of Africanized honey bees 
during the larval and pupal stages after single pesticide 
exposure.  
 
The pupation rate was not impaired by picoxystrobin 
exposure (Quasibinomial GLM, χ²=9.98, df=5, p=0.087). 
Compared to pupae from the CTL group, pupae from all 
groups exhibited a weak Cohen’s h with values ranging from 
-0.5 to 0.2 (Fig. 3). However, a negative influence of 
picoxystrobin exposure was observed on the emergence rate 
(Binomial GLM, χ²=21.311, df=5, p=0.0007), with a reduction in 
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the number of newly emerged adults when exposed to 
PCX400 (p=0.0001), as depicted in Figure 4. 
 

 
 

CTL – Control; CAC – solvent control; PCX5 – picoxystrobin at 5 ng 
a.i./μL; PCX45 – picoxystrobin at 45 ng a.i./μL; PCX135 – picoxystrobin 
at 135 ng a.i./μL; PCX400 – picoxystrobin at 400 ng a.i./μL. 
 

Figure 3: Proportion of Africanized honey bees that reached 
the pupal stage after larval exposure to picoxystrobin. The 
inferior axis displays 95% effect size bootstraps of Cohen’s h 
values obtained by comparing the experimental groups with 
the control group (indicated by the horizontal black line).  
 

 
 

CTL – Control; CAC – solvent control; PCX5 – picoxystrobin at 5 ng 
a.i./μL; PCX45 – picoxystrobin at 45 ng a.i./μL; PCX135 – picoxystrobin 
at 135 ng a.i./μL; PCX400 – picoxystrobin at 400 ng a.i./μL. 
 

Figure 4: Proportion of Africanized honey bees that reached 
the adult stage after larval exposure to picoxystrobin. The 
inferior axis displays 95% effect size bootstraps of Cohen’s h 
values obtained by comparing the experimental groups with 
the control group (indicated by the horizontal black line).  
 
Detection of HSP70 in the fat body 

 
Figure 5 shows the cellular stress response following 
exposure to picoxystrobin, as evidenced by the detection of 
HSP70 in the fat body of newly emerged Africanized A. 
mellifera. The oenocytes and trophocytes of bees from the 
CTL and CAC groups exhibited similar response patterns, 
characterized by either basal levels or the absence of 
immunolabeling of HSP70 (Fig. 5A and Fig. 5B). Furthermore, 

HSP70 labeling was not observed in the cell nuclei. Regarding 
the fat body of bees from the PCX400 group, positively 
immunolabeled regions were observed (Fig. 5C). These 
regions were not identified in the CTL and CAC groups. The 
response pattern of oenocytes was also altered in bees from 
the PCX400 group, with evidence of labeled HSP70 in the 
cytoplasm, specifically in the perinuclear region (Fig. 5D), a 
feature not observed in the CTL and CAC groups. 
 

 
 

A – Control (CTL); B – solvent control (CAC); C – picoxystrobin at 400 
ng a.i./μL (PCX400); fb – fat body; n – nuclei; oe – oenocyte; tr – 
trophocyte; white arrow – positive labeling of HSP70; n – three newly 
emerged honey bees per experimental group. 
 

Figure 5: Detection of HSP70 in the fat body of newly emerged 
Africanized honey bees exposed to the fungicide 
picoxystrobin during the larval stage.  
 

DISCUSSION  
 

The results presented in this study highlight that larval 
exposure to the fungicide picoxystrobin can increase larval 
mortality and reduce bee emergence, even if only at the 
highest concentration (400 ng a.i./μL). This finding is 
concerning, as bees may be exposed to high concentrations 
of fungicide through pollen, nectar, and water (Pettis et al., 
2013; Zubrod et al., 2019; Zioga et al., 2020). According to 
Thompson et al. (2014), the toxicity of fungicides may 
increase in a dose-dependent manner due to ingestion by 
honey bees. In that regard, studies focusing on the prolonged 
contact of larvae and adult bees with fungicides are needed 
to better understand disruptions in developmental processes 
and physiological responses linked to cellular stress. 

Regarding the other picoxystrobin concentrations used 
in this study, neither larval mortality rates nor post-
embryonic development were significantly affected.. The 
absence of adverse effects on these parameters was similarly 



The Adverse Impacts of a Single Exposure to the Fungicide Picoxystrobin during the Larval Stage on Africanized Apis mellifera 
 

40 
 

observed in studies performed with the active ingredient 
pyraclostrobin (Tadei et al., 2019; Domingues et al., 2021) and 
its commercial formulation (Tadei et al., 2020). Fungicide 
pyraclostrobin belongs to the strobilurin chemical class, 
similar to picoxystrobin (Bartlett et al., 2002). On the other 
hand, when fungicides were combined with insecticides, 
larvae were less likely to survive to adulthood (Wade et al., 
2019).  

In addition to the observed effects on the development 
parameters in the PCX400 group, oenocytes from the 
parietal fat body of newly emerged bees exhibited positive 
immunolabeling for HSP70, indicating a cellular stress 
response. Similar findings were described in the intestine 
after larval exposure to the fungicide pyraclostrobin, where 
positive labeling for HSP70 was observed (Tadei et al., 2020). 
According to Malaspina and Silva-Zacarin (2006), proteins 
from the HSP family are essential biomarkers and can be 
used to assess cellular responses to pesticide exposure in 
bees. Due to its sensitivity, this cellular marker has been 
widely used in ecotoxicology studies to evaluate stress 
response, particularly in the fat body of various bee species 
(Balsamo et al., 2023; Farder-Gomes et al., 2024a; Farder-
Gomes et al., 2024b). 

The fat body is a multifunctional organ found around 
the organs (perivisceral) and adjacent to the tegument 
(parietal) in insects, composed of trophocytes and oenocytes 
(Roma et al., 2010). Among the several functions of the fat 
body are the storage of organic molecules, synthesis of 
vitellogenin, hemolymph regulation, immune response, and 
detoxification (Roma et al., 2010; Arrese and Soulages, 2010; 
Abdalla and Domingues, 2015). According to the literature, 
oenocytes are linked to cellular stress response after 
pesticide exposure (Domingues et al., 2017; Assis et al., 2022; 
Inoue et al., 2022), supporting the findings observed in this 
study. 

During the larval stage of bees, the fat body exhibits 
distinct characteristics and is more abundant than in adults 
due to developmental adaptations specific to this stage 
(Cruz-Landim, 2009). Despite its abundance, we observed that 
bees exposed to the highest concentration of picoxystrobin 
exhibited effects on HSP70 in newly emerged bees. This may 
suggest that the fungicide remained bioavailable 
throughout development, leading to a late cellular stress 
response in this parameter. Similar late effects have also 
been reported for other fungicides (Tadei et al., 2019; 
Domingues et al., 2021). 

Based on the findings discussed, this research may 
support future risk assessment programs for bees 
concerning fungicides, which have received less attention 
compared to insecticides and herbicides. However, it is 
important to highlight that this study was conducted under 
laboratory conditions, which might not take field conditions 
into account. Future research should look at long-term 

effects and test these findings in field settings to ensure their 
applicability in natural environments. 

 

CONCLUSIONS  
 

Considering that the biological parameters of Africanized 
honey bee larvae were impacted by a single exposure to the 
highest concentration of fungicide picoxystrobin and based 
on the knowledge gap in the research field, studies like this 
reinforce the relevance of intensifying efforts to develop 
protective actions against larval exposure to fungicides. 
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Škodljivi učinki enkratne izpostavljenosti ličink 
afrikanizirane čebele (Apis mellifera) fungicidu 

pikoksistrobin 
 
 

IZVLEČEK 
 
Uporaba pesticidov ostaja problem v kmetijstvu, saj onesnažuje naravne ekosisteme in vpliva na čebele. Fungicidi se 
pogosto uporabljajo po vsem svetu, medonosne čebele pa lahko v svojo čebeljo družino prinesejo kontaminiran cvetni 
prah in nektar ki vpliva na razvoj ličink. Študije o izpostavljenosti ličink fungicidom so še redke. Zato je bilo to delo 
namenjeno oceni učinkov izpostavljenosti ličink fungicidu pikoksistrobin na biološke parametre in celični stres v 
maščobnem telesu. Ličinke so bile četrti dan (D4) enkrat izpostavljene pikoksistrobinu pri koncentracijah 5 ng a.i./μL 
(PCX5), 45 ng a.i./μL (PCX45), 135 ng a.i./μL (PCX135) in 400 ng a.i./μL (PCX400). Ocenjeni so bili učinki na umrljivost 
ličink in bub, ter učinki na stopnjo zabubljenja in izleganja. Poleg tega je bil pri na novo izleženih čebelah ocenjen 
celični stres v maščobnem telesu. Izpostavljenost PCX400 je povečala smrtnost ličink za 26 % in zmanjšala stopnjo 
izleganja čebel. Druge koncentracije niso vplivale na umrljivost ličink in bub ali na stopnje zabubljenja in izleganja 
čebel. Učinek citotoksičnosti je bil ugotovljen v novo izleženih čebelah, tretiranih s PCX400, na kar kaže pozitivni 
imunski test na HSP70. Enkratna izpostavljenost pikoksistrobinu vpliva na slabši razvoj ličink, povzroči celični stresni 
odziv in potencialno moti dinamiko razvoja čebelje družine. 
 
Ključne besede: razvoj, medonosna čebela, neciljni organizem, strobilurin, toksičnost 
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