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ABSTRACT 
 
Crop inspection plays a significant role in modern agricultural practices as it enables farmers to evaluate the condition of their 
fields and make informed decisions regarding crop management. However, existing methods of crop inspection are often labor-
intensive, leading to slow and costly processes. Therefore, there is a pressing need for more efficient and cost-effective approaches 
to crop inspection to improve agricultural productivity, sustainability, and to deal with labor shortage. In this study, we present 
Rockerbot, a novel agricultural robot designed as a compact rover capable of navigating and surveying maize fields in their early 
growth stages. This technology is essential for timely landscape adjustments to ensure optimal crop production. The document 
offers a comprehensive review of the decisions made during the hardware and software development stages. The hardware section 
is centered around design choices influenced by the rover’s kinematics, while the software section outlines the tasks that Rockerbot 
can perform using mobile perception, such as mapping, sensing, and detection. 
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INTRODUCTION 
 

The rapid growth of the global population and the 
challenges posed by climate change have placed immense 
pressure on the agricultural sector to meet the increasing 
demand for food while minimizing environmental impacts. 
Among various crops, maize stands out as one of the most 
extensively cultivated crops worldwide, serving as a staple 
food source for millions of people (Statista, 2021; Erenstein et 
al., 2022). Addressing the need for enhanced agricultural 
productivity and sustainability in maize farming has 
become crucial, and the integration of robotics has emerged 
as a promising solution. 

Advancements in robotics technology have opened up 
new possibilities for transforming traditional farming 
practices (Sparrow and Howard, 2021). With the ability to 
perform repetitive and labor-intensive tasks with precision 
and efficiency, robots offer significant potential for 
revolutionizing agriculture. Autonomous navigation, 
particularly in wide-ranging maize fields, has become a focal 
point for research and development, as it promises to 
automate the sector and improve overall productivity. 

The automation of maize farming through the 
deployment of robotics allows for several key advantages. 
 

 
Firstly, the introduction of autonomous navigation systems 
in vast agricultural areas enables robots to efficiently 
traverse and survey the fields, ensuring comprehensive 
coverage and data collection. This capability facilitates the 
implementation of site-specific management strategies, 
leading to optimized resource utilization and improved crop 
health. Furthermore, due to global warming posing new 
challenges for maize pest control (Diffenbaugh et al., 2008), 
existing farming practices will be intensely scrutinized year 
after year. Automation undoubtedly contributes to the 
enhancement of autonomous analysis. Secondly, the need 
for automation in agriculture is driven by the swift 
expansion of the global population. This growth is creating 
an exponential demand for food that our current land 
resources are struggling to meet (Ritson, 2020). 

 
Related Works 
 
Autonomous navigation in crop fields is an emerging 

area of study, and the current state-of-the- art offers limited 
solutions for effectively accomplishing this task. The existing 
literature primarily focuses on either the vision or point 
cloud domain in terms of perception. 

Real-Time Kinematic (RTK) and Differential Global 
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Positioning System (DGPS) are advanced techniques used to 
enhance the accuracy of location data from satellite-based 
positioning systems like GPS (Global Positioning System). 
RTK is a type of DGPS that uses a newer technology and 
protocol for more precise measurements. RTK-DGPS relies 
on signals from satellites to perform triangulation, a process 
where it measures the distances between you and at least 
four satellites to calculate your precise location on Earth. 
(Bakker et al., 2010) introduced an early method for 
autonomous maize navigation using RTK-DGPS technology 
to navigate the maize fields. This information provides 
coordinates, such as latitude and longitude, facilitating 
accurate navigation regardless of external landmarks. The 
initial trajectory is established by recording the first line 
formed by the edge point A-B. Subsequently, a complete 
parallel trajectory to the initial segment A-B is generated for 
navigation purposes. It is important to note that this route 
plan does not account for headlands and requires prior 
information about field boundaries, specifically at certain 
points. However, since RTK-DGPS is not universally 
accessible, alternative navigation systems independent of 
RTK-DGPS began to be explored within the research 
community, aiming to provide reliable positioning solutions 
in scenarios where RTK-DGPS signals may be limited or 
denied, particularly in remote or densely vegetated 
agricultural areas. 

In the agricultural sector, particularly in crop fields, 
vision-based systems are favored due to their cost-
effectiveness when compared to LiDARs and radars. The 
employment of vision-based systems has been extensively 
suggested as a potential solution for this task (Yang et al., 
2018; Chen et al., 2020; Liu et al., 2016). (Yang et al., 2018) 
presented a vision system capable of filtering images based 
on the red color to detect the visible roots of maize plants. 
This detection was then refined using the least square 
method to determine the optimal path to be followed. In a 
similar vein, (Chen et al., 2020) proposed an alternative 
approach by employing the Hough transformation to 
identify the central navigation line. Another variation was 
introduced by (Liu et al., 2016), who developed a monocular 
vision navigation system for maize canopy based on RBF 
(Radial Basis Function). This method, unlike the least square 
and Hough transformation techniques, exhibited better 
handling of line following in the presence of curvature. 
However, it is worth noting that all of these methods have 
been specifically tuned for a particular life stage cycle of 
maize. 

Indeed, LiDAR-based systems have been developed to 
account for the changes that occur throughout the life cycle 
of plants. (Reiser et al., 2016) demonstrated the feasibility of 
offline route planning by utilizing laser scan data collection 
paired with RANSAC fitting (Fischler and Bolles, 1981). 
 

Nevertheless, their research was limited to greenhouse 
settings, and real-time performance is not guaranteed as no 
further data processing was performed. In contrast, 
(Hiremath et al., 2014) proposed a probabilistic model based 
on a particle filter, using a 2D LiDAR sensor. This approach 
showcased promising performance across different 
conditions, as it was specifically designed to address 
uncertainties, although the same particle filter approach 
applied to the 3D LiDAR point cloud could suffer 
computational complexity. 

Previous research (Cudrano et al., 2022) has 
demonstrated that the process of autonomous navigation in 
agricultural fields can be divided into two main stages: 
navigating through rows and executing turns. The stage of 
row navigation employs 2D LiDAR scans and clustering 
algorithms to distinguish between crop rows. The detection 
of the end of a row triggers the transition to the turning 
stage. During this stage, the ROS (Robot Operating System) 
navigation stack and SLAM (Simultaneous Localization and 
Mapping) work together to generate a laser-based map, 
which aids in planning and localization. The two-stage 
process emphasizes the importance of identifying the end of 
a row for spatial perception and turn planning. Recognizing 
the row’s end is crucial, informing spatial understanding 
and enabling effective turning strategies, thereby enhancing 
overall navigation efficiency in agricultural settings. 

 
Proposal 
 

This study builds upon our prior work (Cudrano et al., 
2022) and introduces a novel robotic platform, Rockerbot, 
specifically engineered for autonomous farming tasks in 
maize fields (Fig. 1). The main role of our system is to 
autonomously navigate through maize rows that are 0.70 − 
0.75m wide. Rockerbot’s ability to execute complex 
maneuvers, such as navigating around obstacles with 
accurate turns, is dependent on its mapping capabilities, 
which are facilitated by LiDAR sensors. In addition to its 
primary navigation tasks, Rockerbot is also equipped to 
detect objects and simultaneously irrigate side crops. 

 

 
 

Figure 1: Rockerbot navigating through a maze field 
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MATERIAL AND METHODS 
 

The goal of the designed robot is to perform diverse tasks in 
an agricultural field, specifically a maize field. The critical 
parameters of this scenario include plant height (0.3m - 
0.4m), row- to-row spacing of 0.70 − 0.75m, and 
predominantly flat but well-drained terrain with minor 
irregularities. The robot is designed to have autonomous 
navigation capabilities, precisely moving between maize 
rows without inflicting damage, detecting obstacles, and 
identifying various objects. Additionally, it should provide 
flexibility by facilitating the attachment of different tools 
like additional and specialized cameras, small robotics arms, 
and spraying systems to enhance task diversity. 

The locomotion and kinematics of the robot, shown in 
Fig. 2, have been chosen after an accurate analysis of the 
state of the art (Rubio et al., 2019) and taking into account 
the operating environment. 

 

 
 

Figure 2: Kinematic scheme of Rockerbot with its bevel gear 
suspension system 
 

For simplicity and adaptability, a wheeled system was 
chosen, as opposed to legged robots. Several factors 
influenced the design decisions, such as field dimensions, 
terrain requirements, power distribution, and stability. The 
selected design consists of a robot with a 0.4m width, in-hub 
motorized wheels for even power distribution, and a four-
wheel design to enhance weight distribution and ground 
contact area. These decisions ensure greater stability and 
reduce the likelihood of rollover due to irregular terrain. 

The robot incorporates a bevel gear suspension system, 
enabling smooth movement and facilitating cleaner data 
acquisition from onboard sensors by minimizing terrain-
induced vibrations. This suspension system allows for the 
replication of movement from one side of the robot to the 
opposite side, thereby evenly distributing torque and 

smoothing out the effects of terrain irregularities. 
Furthermore, a skid-steering mechanism was integrated 
into the robot’s steering system, preserving both 
construction simplicity (Kozłowski and Pazderski, 2004) and 
the overall robustness of the system. The direct kinematics 
of this robot remain similar to a differential drive (Wang et 
al., 2015), where the primary difference lies in the baseline, 
which depends on wheel slippage rather than the actual 
distance between the wheels. These particular design 
choices enable the robot’s effective operation within the 
agricultural environment, demonstrating the potential to 
handle various tasks efficiently and effectively.  

 

 
 

Figure 3a: Rockerbot’s chassis and dimensions for wheel 
placement 
 

 
 

Figure 3b: Suspension system with a single- wheel bump 

 
 

Figure 3c. Deployment of Rockerbot in a Real- World 
Cornfield 
 

Figure 3: Perspectives collection of Rockerbot’s design 
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In Fig. 3, it is possible to see the compact chassis of 
Rockebot (Fig. 3a), along with its mechanism for averaging 
out irregularities in ground conditions either in testing 
conditions (Fig. 3b) or in real scenarios (Fig. 3c). 

 
Kinematic model 

 
The kinematics of the proposed robot adhere to a skid-
steering model and incorporate a distinctive feature known 
as the Averaging Mechanism. This mechanism serves to 
dampen ground shocks by maintaining equilibrium in the 
pitch angle between the right and left wheel pairs. While 
bearing similarities to the ’Rocker-Bogie Suspension System’ 
introduced in the literature by NASA in 1988, our kinematics 
presents a simplified iteration with four wheels, as opposed 
to the original six-wheel design. 

Skid-steering robots are vehicles that use differential 
steering for motion control. They have two wheels or tracks, 
each independently driven by its motor. The kinematic 
equations for a skid-steering robot describe how its position 
and orientation change over time based on the inputs to the 
two wheels or tracks. Here are the basic kinematic equations 
for such a robot: 

 

Let: 
• v be the linear velocity of the robot (speed along a 

straight line). 
• ω be the angular velocity of the robot (rate of rotation). 
• L be the distance between the two wheels or tracks (the 

wheelbase). 
• R be the radius of the wheels. 

 
The kinematic equations are as follows: 

 

1. Linear Velocity (v): 
 

𝑉𝑉 = 𝑅𝑅
2

·  (𝜔𝜔𝑟𝑟  +  𝜔𝜔𝑙𝑙)    (1) 
 
where ωr and ωl are the angular velocities of the left and 
right wheels, respectively. 
 
2. Angular Velocity (ω): 
 

𝑉𝑉 = 𝑅𝑅
𝐿𝐿

·  (𝜔𝜔𝑟𝑟  +  𝜔𝜔𝑙𝑙)    (2) 
 
where ωr and ωl are the angular velocities of the left and 
right wheels, respectively. 
 

3. Robot’s Position Update: The robot’s position can be 
updated using the following Euler integration, assuming 
that θ is the current orientation angle of the robot: 

 

xnew = xold + v · cos(θ) · ∆t,   (3) 
ynew = yold + v · sin(θ) · ∆t,   (4) 

 

θnew = θold + ω · ∆t,    (5) 
 

where ∆t is the time step between updates. 
 

 
 

Figure 4a: PID control input sequence where the red line is 
the command value to be followed, and the blue one is the 
robot’s response 

 
 

Figure 4b: Bump test comparison in stability with (red line) 
and without (blue line) active suspension system for soil 
irregularities 
 

Figure 4: The design decisions for the Rockerbot are 
illustrated in the accompanying diagrams 

 
The equations in question delineate the relationship 

between a skid-steering robot’s linear and angular velocities 
and the wheel velocities (ωr and ωl). Furthermore, they 
illustrate how its position and orientation change over time 
based on these velocities. This mathematical model plays a 
pivotal role in programming the robot’s motion control and 
carrying out tasks such as path following and odometry. To 
ensure motion stability with the command input [v, ω]T , we 
fine-tuned a PID controller empirically. The optimal values 
obtained were P = 0.02, I = 0.8, D = 0, as depicted in Fig. 4a by 
comparing the command value to Rockerbot’s response to 
the input. 
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Bevel gear suspension system 
 
The angular velocity of a bevel gear suspension system can 
be determined using the principles of rotational motion. 
Bevel gears are used to transmit motion between non-
parallel shafts, and the angular velocity relationship for such 
a system can be described using the gear ratio. 

If we consider a setup where one bevel gear is located on 
the input shaft and the other on the output shaft, we can 
use a specific equation to determine the relationship 
between the angular velocity of the input gear and that of 
the output gear: 
 

Nin · ωin = Nout · ωout,    (6) 
 
where: 
• Nin denotes the number of teeth present on the input 

bevel gear. 
• ωin signifies the angular velocity of the input shaft, 

measured in radians per second. 
• Nout represents the number of teeth on the output bevel 

gear. 
• ωout represents the angular velocity of the output shaft, 

measured in radians per second. 
 
Equation 6 is rooted in the principle of angular 

momentum conservation, which asserts that the product of 
the number of teeth and the angular velocity remains 
constant when gears are engaged with each other. 

To determine either the angular velocity of the output 
gear (ωout) or that of the input gear (ωin), the equation can be 
rearranged as follows: 
 

𝜔𝜔𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜
𝑁𝑁𝑖𝑖𝑖𝑖

·  𝜔𝜔𝑜𝑜𝑜𝑜𝑜𝑜     (7) 
 

Equation 7 allows for the determination of the angular 
velocity of either gear, given the number of teeth and the 
angular velocity of the other gear. In our particular scenario, 
where the number of teeth is identical across gears, an 
angular velocity counter-balance is achieved concerning the 
sides of the Rockerbot wheels allowing better stability 
concerning the irregular ground as highlighted by the test 
shown in Fig. 4b. 

 

Sensors 
 
Concerning perceptual capabilities, Rockerbot is equipped 
with a 32-plane LiDAR, supplemented by a 1-plane laser scan 
for crop mapping. The primary source of odometric 
information is derived from an Intel RealSense feature-
based camera, which offers superior adaptability to changes 
in vegetation compared to approaches based on point 
clouds. Furthermore, the robot incorporates an OAK-D Pro 

camera, complete with a neural inference chip. This setup 
enables real-time object detection during navigation and 
facilitates the distribution of computational load. 
 
Navigation method 

 
The primary objective is to equip the robot with the ability 
to independently identify and follow crop rows. A crucial 
aspect of this process involves the robot’s capability to detect 
the end of a row and subsequently execute a complete turn 
to continue its navigation in the next row. The navigation 
process is thus bifurcated into two distinct stages: row 
navigation and turning. The transition between these stages 
is facilitated by an end-of-row detector. 

Our navigation method involves an inline process that 
partitions the surrounding point cloud of plants into two 
distinct groups through single-plane 2D clustering. These 
clusters are defined in real time, and we use the RANSAC 
algorithm to find the best-fitting line for each group. To 
ensure stability and address sudden changes in line slopes 
during the RANSAC convergence process, we use a sliding 
window of size 10, which includes a discount factor in the 
row direction. 

With a well-defined line direction providing a local 
obstacle-free pathway, we calculate a series of control inputs 
to determine the next action, which could be either moving 
forward or retreating, depending on the situation. When 
navigation is active, a subprocess works to determine if the 
end of the maize row is approaching. If it is, a turning point 
is calculated based on the left or right direction, as indicated 
by the predefined path. 

The turn is executed using the Nav2 framework, which 
considers a tuned cost map of the environment collected in 
 
real time during navigation. We retrieve the occupancy grid 
map with the help of a single-plane scan for close-range 
distances, and a multi-plane LiDAR for longer distances. The 
multi-plane LiDAR is preprocessed to merge a collection of 
planes slightly above the ground onto the same hypothetical 
plane. For computational efficiency, the ground is detected 
and removed. 

 
Watering procedure 

 
Rockerbot possesses the capability to detect nearby plants 
during its navigation and administer a liquid solution to 
them. This functionality is facilitated by the use of a mono-
plane laser-scan sensor. Employing a predetermined 
threshold, we group the lateral laser points to ascertain the 
presence or absence of plants. Subsequently, the watering 
system is activated to irrigate the identified plants. It’s worth 
noting that while the system was initially designed for 
water, it can also be adapted for the dispensing of fertilizers, 
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pesticides, herbicides, or any other liquid solutions required 
to enhance crop quality in a maize field. 
 
Object detection 

 
Rockerbot is equipped with the OAK-D Pro camera, which 
enables efficient object detection through dedicated on-
board neural network serialization and deployment 
capabilities. Unlike other affordable commercial RGB-D 
cameras like the Intel RealSense, which necessitates off-
board computation, the OAK-D Pro comes with built-in 
memory. This memory is specifically engineered to house a 
compact deep learning model in inference mode. This 
feature allows for quicker computations on its integrated 
chip and more efficient distribution of the robot’s 
computational load. We have deployed a fine-tuned YOLOv8 
medium-size model (Redmon et al., 2016) to distinguish 
between deers and humans. 

To mitigate the possibility of misclassifications at run-
time, which may not have been avoidable during training 
time, we implemented a dynamic sliding prediction FIFO 
(First-In-First-Out) buffer with a predefined size of 10 
predictions. If the majority of predictions within this buffer 
belong to the same class, the system issues an alert with the 
corresponding class-specific signal. 

The adopted YOLO settings for training encompass a 
comprehensive set of data augmentation techniques aimed 
at enhancing the robustness and diversity of the training 
dataset, composed by us of 23, 850 images. Firstly, an ”auto-
orient” approach is applied, ensuring that objects in the 
images are correctly oriented, thus minimizing potential 
biases associated with object orientations. The images are 
then resized to a uniform 416 × 416 resolution using a ”center 
crop” strategy, which maintains the most informative region 
while eliminating unnecessary background information. 
Contrast stretching is employed to further augment the 
dataset, enhancing the visibility of objects and patterns in 
the images. 

Horizontal and vertical flipping is introduced as part of 
the data augmentation pipeline, expanding the dataset by 
creating mirrored versions of the original images. 
Additionally, rotations of 90 degrees in both clockwise and 
counter-clockwise directions, as well as flipping images 
upside down, are applied to introduce variations in object 
orientations. To simulate real-world scenarios and introduce 
randomness, rotations within a range of −45 to +45 degrees 
are incorporated. 

Furthermore, a controlled degree of variability is 
introduced through small random rotations, up to ±15 
degrees, in both horizontal and vertical directions. These 
settings collectively contribute to a training dataset that is 
more comprehensive, diverse, and representative of real-
world conditions, ultimately enhancing the performance 

and generalization capabilities of the YOLO object detection 
model. 
 

RESULTS 
 
Kinematics 
 

When assessing the skid-steering robot’s performance, our 
initial validation test centered on its steering capabilities, 
specifically its ability to execute in-place turns. Our 
observations revealed a strong correlation between this 
ability and the robot’s wheelbase dimension. To evaluate 
this behavior, we conducted a series of experiments in a 
controlled, level environment. Throughout these tests, we 
maintained a constant wheel separation (the distance 
between the left and right wheels) while varying the robot’s 
wheelbase (the distance between its front and rear axles). We 
tested three different robot models with wheelbases of 0.15m, 
0.32m, and 0.41m. 

The results unequivocally demonstrated that the size of 
the robot’s wheelbase had a significant impact on its in-
place turning capabilities. A larger wheelbase led to a 
diminished capacity for the robot to execute in-place turns 
effectively. Consequently, we faced a decision between opting 
for a shorter wheelbase, which improved turning 
capabilities and choosing a longer one that ensured greater 
overall stability. Ultimately, for the final robot design, we 
settled on a wheelbase of 0.32m to strike a balance between 
enhanced turning performance and overall stability. 

 
Suspensions 

 
A comprehensive validation process was undertaken to 
assess the efficacy of the robot’s suspension mechanism. 
Initially, simulation tests were performed in Gazebo ROS2, 
where the robot navigated through a simulated flat terrain 
with strategically placed bumps to engage only the right 
front and rear wheels. Subsequently, real-world validation 
tests were conducted to corroborate the simulation results 
and evaluate the practical performance of the suspension 
system. A meticulous methodology was employed to ensure 
precise replication of simulated conditions, guaranteeing 
accuracy and consistency in the evaluation process. The test 
track was accurately designed to mirror the simulated 
environment, facilitating an accurate assessment of real-
world scenarios. The primary evaluation metric utilized was 
the robot’s pitch angle profile, enabling a comparative 
analysis between active suspension and immobilized 
scenarios. 

In both simulated and real-world environments, the 
robot’s suspension mechanism demonstrated significant 
effectiveness in mitigating pitch angles when encountering 
bumps. Simulation results showcased a peak-to-peak pitch 
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angle reduction from 25.61 to 12.33 with an active suspension 
system, marking a notable 51.8% improvement compared to 
immobilized suspension. Real-world testing corroborated 
these findings, demonstrating consistent reductions in pitch 
angles with the suspension system enabled. Specifically, 
pitch angles decreased from 

29.76 to 18.63, indicating a substantial 38.4% improvement 
in pitch angle mitigation. These results, illustrated in Fig. 4b, 
underscore the robustness and efficacy of the robot’s 
suspension mechanism in real-world scenarios, validating 
its practical utility and performance. 
 
Odometry 
 
The critical element essential for enabling autonomous 
navigation is the provision of reliable odometry data to guide 
the robot. Traditionally, this data is calculated using wheel 
encoders. However, due to the significant wheel slippage 
experienced in rugged terrains, exacerbated by the inherent 
characteristics of our kinematic system, we have 
incorporated an additional sensor – a visual odometry 
camera (specifically, the Intel T265). 

To assess the performance of both systems, we recorded 
odometry data from both the wheel encoders and the 
camera, comparing them against the data obtained from a 
high-precision motion capture system. Our evaluation 
involved computing the Absolute Position Error (APE) 
between the respective trajectories. The resulting Root Mean 
Squared Error (RMSE) for the APE is presented in Table 1, 
underscoring the necessity of an external odometry source, 
such as the T265 camera, to mitigate the substantial errors 
associated with encoder-based odometry in a skid-steering 
robot. 

 
Table 1: RMSE error in meters of the T265 and wheel encoder 
concerning the OptiTrack trajectory 

Method RMSE 
Encoder odometry T265 
odometry 

2.432022 
0.596588 

 
Object detection 
 
Table 2: Average precision (AP) by class: deer, human, and all 

 Validation Testing 
all 81% 87% 
deer 88% 90% 
human 74% 84% 

 
The performance of the custom-trained YOLO model 
demonstrated effectiveness, as evidenced by the results 
presented. In Table 2, it can be observed that the model 
efficiently distinguished between deers and humans, 
achieving a higher Average Precision on the Testing Set 

compared to the Validation Set used for hyper-parameter 
adjustment.  

This implies that the model avoided overfitting the 
training data, making it a dependable option for real-world 
usage. Furthermore, the high metric values in Table 3 
emphasize the model’s efficacy on the dataset. 

 
Table 3: Deployment and performance evaluation of the 
proposed fine-tuned YOLO model 

 mAP Precision Recall 
Overall 81.3% 84.1% 74.4% 

 
As depicted in Table 2, the testing set exhibited a higher 

mean Average Precision (mAP) score compared to the 
validation set, indicating the efficacy of fine-tuning without 
encountering overfitting issues. By delving into specific 
categories, particularly considering the balanced 
distribution of deers and humans in the training set, it 
becomes apparent from the data that the model became 
more adept at distinguishing between a deer and a human. 
This observation aligns with intuition, as deers typically 
maintain a consistent appearance across different habitats, 
whereas humans exhibit greater physical variability. This 
qualitative understanding elucidates why the mAP for 
humans is 84% and for deers is 90%. Nonetheless, both 
results are deemed excellent from a machine learning 
perspective on classification, thereby ensuring sufficient 
reliability for practical deployment. 

The overall mAP of 81.3% reflects the model’s 
comprehensive performance across all categories. This 
metric encapsulates both precision and recall, providing a 
holistic measure of the model’s ability to correctly classify 
instances across various classes. The precision of 84.1% 
indicates the proportion of correctly identified instances 
among all instances classified as positive, highlighting the 
model’s ability to minimize false positives. Conversely, the 
recall of 74.4% signifies the proportion of correctly identified 
instances among all actual positive instances, indicating the 
model’s capacity to capture relevant instances without 
overlooking them. The balance between precision and recall 
is crucial in assessing the model’s effectiveness in real-world 
scenarios, where both minimizing false positives and false 
negatives are essential for reliable decision- making. 
Therefore, the combination of these metrics offers valuable 
insights into the model’s overall performance and its 
suitability for practical deployment in classification tasks. 

 

DISCUSSION 
 

The results presented provide valuable insights into the 
design and performance of Rockerbot. 

In terms of kinematics, the findings highlight the trade-
off between turning capabilities and overall stability in the 
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context of the robot’s wheelbase dimension. The decision to 
opt for a wheelbase of 0.32m represents a compromise 
between these two critical factors. This suggests that future 
designs might benefit from mechanisms that allow for 
adjustable wheelbase dimensions, enabling the robot to 
adapt to different operational requirements. 

The research findings highlight the critical role of an 
active suspension system in augmenting the performance of 
robots, particularly in managing pitch angles. Both 
simulated and real-world tests demonstrated substantial 
enhancements, affirming the necessity of integrating such 
systems into robot designs. Further investigations could 
delve into the effects of varying suspension designs and 
configurations on overall robot performance, offering 
avenues for future research and development. 

The odometry results highlight the challenges 
associated with obtaining reliable data in rugged terrains 
due to wheel slippage. The incorporation of a visual 
odometry camera (Intel T265) proved effective in mitigating 
these issues. This suggests that multi-modal sensor fusion, 
combining data from different types of sensors, could be a 
promising approach for improving odometry in skid-
steering robots. 

The performance of the custom-trained YOLO model in 
object detection tasks demonstrates the potential of deep 
learning techniques in enhancing the robot’s autonomous 
navigation capabilities. The model’s ability to generalize well 
to unseen data indicates its robustness and reliability, 
making it a promising choice for real-world deployment. 
Future research could explore the application of similar 
models to other object detection tasks, as well as the 
integration of these models into the robot’s navigation 
system. 

As future directions, enhancing the rotational curvature 
within a skid-steering model by advancing independent 
turning wheels offers a promising direction for future 
investigation. This endeavor entails refining kinematics to 
achieve the agility and precision observed in contemporary 
tractors. Additionally, there is a required emphasis on radar 
 
odometry, which represents a forefront technology in 
agriculture. Its robustness in adverse weather conditions, 
despite the RTK-DGPS, provides unmatched reliability for 
navigation (Frosi et al., 2023) and localization tasks (Usuelli et 
al., 2023). The integration of radar-based sensing systems 
holds significant potential for augmenting autonomous 
operations, especially in demanding environments such as 
maize fields. 

In conclusion, the results presented provide a strong 
foundation for the ongoing development and refinement of 
skid-steering robots, with implications for their kinematics, 
suspension, odometry, and object detection capabilities. 
Future work in this area would do well to build on these 
 

findings, exploring the potential of adjustable wheelbase 
dimensions, multi-modal sensor fusion, and deep learning 
techniques in enhancing the performance and versatility of 
these robots. 
 
Field Robot Event 2023 
 
We have had the pleasure of deploying this research in the 
renowned annual international competition Field Robotics 
Event (FRE) in autonomous robotics agriculture. Despite 
successfully fine-tuning the autonomous navigation system 
and achieving highly positive results, we encountered a 
technical glitch on the day of the competition. A defect in 
the motor’s encoders caused two out of the four wheels to 
become inoperative, which unfortunately hindered our 
participation in the navigation task. Nevertheless, Rockerbot 
managed to secure the third position in the Object Detection 
contest, thereby validating the superior quality of our 
research. As we look to the future, our goal is to further 
improve Rockerbot’s overall system for next year FRE 2024. 

 

CONCLUSION 
 

In this study, we detailed the creation and refinement of a 
compact agricultural robot designed for autonomous 
navigation and surveillance of crop fields. The design 
decisions were initially tested and validated in a simulated 
environment before being applied in real-world conditions, 
effectively bridging the gap between theoretical design and 
practical application. This work was showcased at the 
esteemed Field Robotics Event 2023 in Maribor (Slovenia) 
where our proposed system secured third place in the Object 
Detection task. Looking ahead, we plan to further enhance 
the capabilities of Rockerbot, building on the success of this 
research and pushing the boundaries of autonomous 
agricultural technology. 
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Rockerbot: Kinematika robotske platforme za  
pridelavo koruze 

 
 

IZVLEČEK 
 
Pregledovanje in nadzor pridelka imata pomembno vlogo v sodobni kmetijski praksi, saj kmetom omogočata, da 
ocenijo stanje svojih njiv in na podlagih pravih informacij sprejemajo pravilne odločitve glede upravljanja s pridelki. 
Vendar so obstoječe metode pregledovanja pridelka pogosto računsko intenzivne, kar vodi do počasnih in dragih 
postopkov. Iz tega razloga obstaja zahteva po učinkovitejših in stroškovno dostopnejših pristopih za pregledovanje 
pridelkov, z namenom izboljšanja produktivnosti in trajnosti v kmetijstvu, kot tudi za reševanje težav glede 
pomanjkanja delovne sile. V tej raziskavi predstavljamo Rockerbot, nov kmetijski robot, ki je zasnovan kot kompaktni 
rover, sposoben krmariti in pregledovati koruzna polja v zgodnjih fazah rasti. Predstavljena tehnologija je bistvenega 
pomena za pravočasno prilagajanje spremembam, da se zagotovi optimalna pridelava pridelka. Delo ponuja celovit 
pregled korakov in odločitev, sprejetih v fazi razvoja strojne in programske opreme. Poglavje o strojni opremi je 
osredotočeno na dizajn robota, ki ga narekuje kinematika roverja, medtem ko poglavje o programski opremi opisuje 
naloge, ki jih lahko Rockerbot izvaja z uporabo mobilnega zaznavanja, kot so kartiranje, zaznavanje in odkrivanje. 
 
Ključne besede: kmetijska robotika, pametno kmetijstvo, avtonomna navigacija, zalivanje, kartiranje 
 


